A Rolling Bearing Fault Diagnosis Method Based on Switchable Normalization and a Deep Convolutional Neural Network

被引:4
|
作者
Han, Xiaoyu [1 ]
Cao, Yunpeng [2 ]
Luan, Junqi [2 ]
Ao, Ran [2 ]
Feng, Weixing [1 ]
Li, Shuying [2 ]
机构
[1] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Power & Energy Engn, Harbin 150001, Peoples R China
关键词
deep convolutional neural network; fault diagnosis; K-max pooling; rolling bearing; switchable normalization; ROTATING MACHINERY; EXTRACTION; NOISE; SPEED; VMD;
D O I
10.3390/machines11020185
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming to address the problems of a low fault detection rate and poor diagnosis performance under different loads and noise environments, a rolling bearing fault diagnosis method based on switchable normalization and a deep convolutional neural network (SNDCNN) is proposed. The method effectively extracted the fault features from the raw vibration signal and suppressed high-frequency noise by increasing the convolution kernel width of the first layer and stacking multiple layers' convolution kernels. To avoid losing the intensity information of the features, the K-max pooling operation was adopted at the pooling layer. To solve the overfitting problem and improve the generalization ability, a switchable normalization approach was used after each convolutional layer. The proposed SNDCNN was evaluated with two sets of rolling bearing datasets and obtained a higher fault detection rate than SVM and BP, reaching a fault detection rate of over 90% under different loads and demonstrating a better anti-noise performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Fault Diagnosis for Rolling Bearing Based on Deep Residual Neural Network
    Sun, Yi
    Gao, Hongli
    Hong, Xin
    Song, Hongliang
    Liu, Qi
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 421 - 425
  • [22] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Zhang, Xiaochen
    Li, Hanwen
    Meng, Weiying
    Liu, Yaofeng
    Zhou, Peng
    He, Cai
    Zhao, Qingbo
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (10)
  • [23] Fault diagnosis of rolling bearing based on online transfer convolutional neural network
    Xu, Quansheng
    Zhu, Bo
    Huo, Hanbing
    Meng, Zong
    Li, Jimeng
    Fan, Fengjie
    Cao, Lixiao
    APPLIED ACOUSTICS, 2022, 192
  • [24] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [25] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Xiaochen Zhang
    Hanwen Li
    Weiying Meng
    Yaofeng Liu
    Peng Zhou
    Cai He
    Qingbo Zhao
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [26] Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
    Li, Hongmei
    Huang, Jinying
    Ji, Shuwei
    SENSORS, 2019, 19 (09)
  • [27] Development of Deep Convolutional Neural Network with Adaptive Batch Normalization Algorithm for Bearing Fault Diagnosis
    Fu, Chao
    Lv, Qing
    Lin, Hsiung-Cheng
    SHOCK AND VIBRATION, 2020, 2020
  • [28] Intelligent fault diagnosis method of rolling bearing based on stacked denoising autoencoder and convolutional neural network
    Che Changchang
    Wang Huawei
    Ni Xiaomei
    Fu Qiang
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2020, 72 (07) : 947 - 953
  • [29] Fault migration diagnosis method for rolling bearing based on 2D convolutional neural network
    Wang, Dongliang
    He, Jiewei
    Chen, Xiangyuan
    Li, Ning
    Yang, Jin
    NONDESTRUCTIVE TESTING AND EVALUATION, 2024,
  • [30] Fault diagnosis method of rolling bearing based on deep belief network
    Shang, Zhiwu
    Liao, Xiangxiang
    Geng, Rui
    Gao, Maosheng
    Liu, Xia
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2018, 32 (11) : 5139 - 5145