A Rolling Bearing Fault Diagnosis Method Based on Switchable Normalization and a Deep Convolutional Neural Network

被引:4
|
作者
Han, Xiaoyu [1 ]
Cao, Yunpeng [2 ]
Luan, Junqi [2 ]
Ao, Ran [2 ]
Feng, Weixing [1 ]
Li, Shuying [2 ]
机构
[1] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Power & Energy Engn, Harbin 150001, Peoples R China
关键词
deep convolutional neural network; fault diagnosis; K-max pooling; rolling bearing; switchable normalization; ROTATING MACHINERY; EXTRACTION; NOISE; SPEED; VMD;
D O I
10.3390/machines11020185
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aiming to address the problems of a low fault detection rate and poor diagnosis performance under different loads and noise environments, a rolling bearing fault diagnosis method based on switchable normalization and a deep convolutional neural network (SNDCNN) is proposed. The method effectively extracted the fault features from the raw vibration signal and suppressed high-frequency noise by increasing the convolution kernel width of the first layer and stacking multiple layers' convolution kernels. To avoid losing the intensity information of the features, the K-max pooling operation was adopted at the pooling layer. To solve the overfitting problem and improve the generalization ability, a switchable normalization approach was used after each convolutional layer. The proposed SNDCNN was evaluated with two sets of rolling bearing datasets and obtained a higher fault detection rate than SVM and BP, reaching a fault detection rate of over 90% under different loads and demonstrating a better anti-noise performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Rolling Bearing Fault Diagnosis Based on GWVD and Convolutional Neural Network
    Lv, Xiaoxuan
    Li, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 514 - 523
  • [22] Interpretability of deep convolutional neural networks on rolling bearing fault diagnosis
    Yang, Huixin
    Li, Xiang
    Zhang, Wei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (05)
  • [23] Fault diagnosis of rolling bearing based on deep convolutional neural network and gated recurrent unit
    Zhou, Zhexin
    Wang, Hao
    LI, Zhuoxian
    Chen, Wei
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2023, 17 (02)
  • [24] Fault diagnosis method of rolling bearing based on deep belief network
    Zhiwu Shang
    Xiangxiang Liao
    Rui Geng
    Maosheng Gao
    Xia Liu
    Journal of Mechanical Science and Technology, 2018, 32 : 5139 - 5145
  • [25] Fault Diagnosis Method of Rolling Bearing Based on BP Neural Network
    Huang Zhonghua
    Xie Ya
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 647 - 649
  • [26] Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network
    Ding C.
    Feng Y.
    Wang M.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (02): : 287 - 296
  • [27] Fault diagnosis method of rolling bearing based on deep belief network
    Shang, Zhiwu
    Liao, Xiangxiang
    Geng, Rui
    Gao, Maosheng
    Liu, Xia
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2018, 32 (11) : 5139 - 5145
  • [28] Application of convolutional neural network and kurtosis in fault diagnosis of rolling bearing
    Li J.
    Liu Y.
    Yu Y.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (11): : 2423 - 2431
  • [29] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Liang, Mingxuan
    Cao, Pei
    Tang, J.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 112 (3-4) : 819 - 831
  • [30] Fault diagnosis of rolling bearing based on an improved convolutional neural network using SFLA
    Li Y.
    Ma J.
    Jiang L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (24): : 187 - 193