GARL-Net: Graph Based Adaptive Regularized Learning Deep Network for Breast Cancer Classification

被引:23
作者
Patel, Vivek [1 ]
Chaurasia, Vijayshri [1 ]
Mahadeva, Rajesh [2 ]
Patole, Shashikant P. P. [2 ]
机构
[1] Maulana Azad Natl Inst Technol, Dept Elect & Commun Engn, Bhopal, Madhya Pradesh, India
[2] Maulana Azad Natl Inst Technol, Dept Elect & Commun Engn, Bhopal, Madhya Pradesh, India
关键词
Deep learning; breast cancer image classification; complement cross entropy; transfer learning; graph Laplacian basis regularization; computer aided diagnostic; HISTOPATHOLOGICAL IMAGES; PREDICTION; DIAGNOSIS;
D O I
10.1109/ACCESS.2023.3239671
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Across the globe, women suffer from breast cancer fatal disease. It is arising surprisingly due to a lack of awareness among them and the inconvenient reach of diagnostic systems. Many computer-aided diagnostic systems have been developed for the detection of cancer. These systems have quite lower performance, so more accurate diagnosis is the need of the time to save the life of human beings. For large and imbalanced image datasets, efficient learning of the network is very important to detect and classify breast cancer more accurately. In this paper, a graph based adaptive regularized learning of deep network (GARL-Net) is proposed for more accurate breast cancer classification. Transfer learning is used for training the backbone network DenseNet121. furthermore, fine tuning of backbone network is followed by the estimated improved loss function. The improved loss function is actually graph based adaptively regularized complement cross entropy loss. The SoftMax cross entropy in itself is not sufficient to classify image samples accurately, so complement entropy technique is incorporated with the cross-entropy loss to overcome the misclassification issue. Further, by adaptive scaling of regularization term with spatial graph Laplacian basis used to adaptively penalize the complement cross entropy loss for improving the learning of the network. The performance of the proposed method is evaluated using BreakHis and BACH 2018 histopathology image datasets and outperforms the existing state-of-the-art methods and achieved 99.00% of precision, 99.40% of recall, 99.20 % of F-1score, and 99.49% of accuracy for binary classification of breast cancer image samples of BreakHis dataset.
引用
收藏
页码:9095 / 9112
页数:18
相关论文
共 72 条
[1]   A State-of-the-Art Survey on Deep Learning Theory and Architectures [J].
Alom, Md Zahangir ;
Taha, Tarek M. ;
Yakopcic, Chris ;
Westberg, Stefan ;
Sidike, Paheding ;
Nasrin, Mst Shamima ;
Hasan, Mahmudul ;
Van Essen, Brian C. ;
Awwal, Abdul A. S. ;
Asari, Vijayan K. .
ELECTRONICS, 2019, 8 (03)
[2]   Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Nasrin, Shamima ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) :605-617
[3]  
[Anonymous], 2022, Breast Cancer Facts Figures 2022-2024
[4]  
[Anonymous], 2021, Annual Report
[5]   Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks [J].
Bardou, Dalal ;
Zhang, Kun ;
Ahmad, Sayed Mohammad .
IEEE ACCESS, 2018, 6 :24680-24693
[6]  
Dabeer S, 2019, Inform Med Unlocked, V16, DOI DOI 10.1016/J.IMU.2019.100231
[7]   An Efficient Detection and Classification of Acute Leukemia Using Transfer Learning and Orthogonal Softmax Layer-Based Model [J].
Das, Pradeep Kumar ;
Sahoo, Biswajeet ;
Meher, Sukadev .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) :1817-1828
[8]  
de Matos J, 2019, Arxiv, DOI arXiv:1904.07900
[9]  
Defferrard M, 2016, ADV NEUR IN, V29
[10]   Deep Manifold Preserving Autoencoder for Classifying Breast Cancer Histopathological Images [J].
Feng, Yangqin ;
Zhang, Lei ;
Mo, Juan .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (01) :91-101