Reconfiguration toward Self-Assembled Monolayer Passivation for High-Performance Perovskite Solar Cells

被引:24
作者
Chen, Zijing [1 ,2 ]
Li, Yiming [1 ,3 ]
Liu, Zhenghao [1 ,2 ]
Shi, Jiangjian [1 ]
Yu, Bingcheng [1 ,3 ]
Tan, Shan [1 ]
Cui, Yuqi [1 ,2 ]
Tan, Chengyu [1 ,2 ]
Tian, Fubo [4 ]
Wu, Huijue [1 ]
Luo, Yanhong [1 ,2 ,5 ]
Li, Dongmei [1 ,5 ]
Meng, Qingbo [1 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Chinese Acad Sci CAS, Inst Phys,Key Lab Renewable Energy, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Huairou Div, Beijing 101400, Peoples R China
[4] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[5] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[6] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
北京市自然科学基金;
关键词
composite passivation layers; high-performance; perovskite solar cells; reconfiguration; self-assembled monolayers; stability; TiO2; perovskite interfaces; DEFECT PASSIVATION; EFFICIENT; IODIDE; STATES;
D O I
10.1002/aenm.202202799
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Self-assembled monolayers (SAMs) with unique ordered structures and varied anchoring groups have emerged as an excellent interfacial strategy for perovskite solar cells (PSCs). Herein, 3-carboxypropyl-triphenyl phosphonium bromide with the participation of the fullerene derivative [6,6]-phenyl-C-61-butyric acid (PCBA) as functionalized C-PCBA SAM, is introduced to stably modify the TiO2/perovskite interface. In the meantime, with strong fullerene cage-iodide interaction, ordered C-PCBA SAM can passivate interfacial defects and improve the electron transportation. A high efficiency of 24.8% and stabilized power output of 23.9%, are achieved with negligible hysteresis, which is among the best performances for TiO2 planar PSCs. This modified cell also exhibits significantly improved stabilities under different testing conditions; non-encapsulated devices can maintain 95% of initial efficiency after 1000 h thermal stability testing at 85 degrees C and 85% after 700 h continuous illumination (approximate to 100 mW cm(-2)) and maximum-power-point tracking. This work provides valuable inspiration for developing highly efficient and stable PSCs by using a convenient SAM reconfiguration strategy.
引用
收藏
页数:11
相关论文
共 74 条
  • [1] High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers
    Abrusci, Agnese
    Stranks, Samuel D.
    Docampo, Pablo
    Yip, Hin-Lap
    Jen, Alex K-Y.
    Snaith, Henry J.
    [J]. NANO LETTERS, 2013, 13 (07) : 3124 - 3128
  • [2] Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells
    Al-Ashouri, Amran
    Magomedov, Artiom
    Ross, Marcel
    Jost, Marko
    Talaikis, Martynas
    Chistiakova, Ganna
    Bertram, Tobias
    Marquez, Jose A.
    Kohnen, Eike
    Kasparavicius, Ernestas
    Levcenco, Sergiu
    Gil-Escrig, Lidon
    Hages, Charles J.
    Schlatmann, Rutger
    Rech, Bernd
    Malinauskas, Tadas
    Unold, Thomas
    Kaufmann, Christian A.
    Korte, Lars
    Niaura, Gediminas
    Getautis, Vytautas
    Albrecht, Steve
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (11) : 3356 - 3369
  • [3] Gabedit-A Graphical User Interface for Computational Chemistry Softwares
    Allouche, Abdul-Rahman
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (01) : 174 - 182
  • [4] IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS
    BLOCHL, PE
    JEPSEN, O
    ANDERSEN, OK
    [J]. PHYSICAL REVIEW B, 1994, 49 (23): : 16223 - 16233
  • [5] Sequential deposition as a route to high-performance perovskite-sensitized solar cells
    Burschka, Julian
    Pellet, Norman
    Moon, Soo-Jin
    Humphry-Baker, Robin
    Gao, Peng
    Nazeeruddin, Mohammad K.
    Graetzel, Michael
    [J]. NATURE, 2013, 499 (7458) : 316 - +
  • [6] Causes and Solutions of Recombination in Perovskite Solar Cells
    Chen, Jiangzhao
    Park, Nam-Gyu
    [J]. ADVANCED MATERIALS, 2019, 31 (47)
  • [7] Stabilizing perovskite-substrate interfaces for high-performance perovskite modules
    Chen, Shangshang
    Dai, Xuezeng
    Xu, Shuang
    Jiao, Haoyang
    Zhao, Liang
    Huang, Jinsong
    [J]. SCIENCE, 2021, 373 (6557) : 902 - +
  • [8] Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability
    Dai, Zhenghong
    Yadavalli, Srinivas K.
    Chen, Min
    Abbaspourtamijani, Ali
    Qi, Yue
    Padture, Nitin P.
    [J]. SCIENCE, 2021, 372 (6542) : 618 - +
  • [9] Highly Efficient Planar Perovskite Solar Cells Via Interfacial Modification with Fullerene Derivatives
    Dong, Yang
    Li, Wenhua
    Zhang, Xuejuan
    Xu, Qian
    Liu, Qian
    Li, Cuihong
    Bo, Zhishan
    [J]. SMALL, 2016, 12 (08) : 1098 - 1104
  • [10] Frisch M.J., 2016, Gaussian 09, Revision D.01