Instability of algebraic standing waves for nonlinear Schrodinger equations with triple power nonlinearities

被引:0
作者
Tin, Phan Van [1 ]
机构
[1] Univ Toulouse, UPS IMT Inst Math Toulouse, UMR5219, CNRS, Toulouse, France
关键词
Nonlinear Schrodinger equations; standing waves; instability; virial identity; POSITIVE SOLUTIONS; STABILITY THEORY; SOLITARY WAVES; EXISTENCE;
D O I
10.1080/17476933.2022.2146104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following triple power nonlinear Schrodinger equation: iu(t) + delta u+ a(1)|u|u + a(2)|u|(2)u + a(3)|u|(3)u = 0. We are interested in algebraic standing waves, i.e standing waves with algebraic decay above equation in dimensions n(n=1, 2, 3).We prove the instability of these solutions in the cases DDF (we use abbreviation D: defocusing (a(i )< 0), F: focusing (a(i) > 0)) and DFF when n=2, 3 and in the case DFF with a(1 )= -1, a(3 )= 1 and a(2 )< 32/15 root 6 when n=1.
引用
收藏
页码:449 / 466
页数:18
相关论文
共 17 条
[1]   Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems [J].
Bellazzini, Jacopo ;
Frank, Rupert L. ;
Visciglia, Nicola .
MATHEMATISCHE ANNALEN, 2014, 360 (3-4) :653-673
[2]   AN ODE APPROACH TO THE EXISTENCE OF POSITIVE SOLUTIONS FOR SEMI-LINEAR PROBLEMS IN RN [J].
BERESTYCKI, H ;
LIONS, PL ;
PELETIER, LA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (01) :141-157
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[5]  
Cazenave T., 2003, Semilinear Schrodinger Equations
[6]   INSTABILITY OF ALGEBRAIC STANDING WAVES FOR NONLINEAR SCHRODINGER EQUATIONS WITH DOUBLE POWER NONLINEARITIES [J].
Fukaya, Noriyoshi ;
Hayashi, Masayuki .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (02) :1421-1447
[7]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .2. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 94 (02) :308-348
[8]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) :160-197
[9]  
Iliev ID., 1993, DIFFERENTIAL INTEGRA, V6, P685
[10]   RADIAL SYMMETRY OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC-EQUATIONS IN R(N) [J].
LI, Y ;
NI, WM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (5-6) :1043-1054