A hybrid domain learning framework for unsupervised semantic segmentation

被引:15
作者
Zhang, Yuhang [2 ,4 ]
Tian, Shishun [2 ,4 ]
Liao, Muxin [2 ,4 ]
Zou, Wenbin [1 ,2 ,3 ,4 ]
Xu, Chen [5 ]
机构
[1] Shenzhen Univ, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[5] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised domain adaptation; Semantic segmentation; Hybrid domain; ADAPTATION; INVARIANT; NETWORKS;
D O I
10.1016/j.neucom.2022.10.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Supervised semantic segmentation often fails to generalize well in unseen scenarios due to the domain gap between the source and the target domains. Unsupervised domain adaptation is one possible way to solve this problem. However, the existing methods suffer two limitations. First, the number limitation of samples may lead to decreasing generalization. Second, only the source dataset contains pixel-level annotations, which provide stronger supervision in the source domain and result in overfitting to the source domain. To tackle these issues, we propose a hybrid domain learning (HDL) framework where the hybrid domain acts as the intermediate domain between the source domain and the target domain. Specifically, we first generate the hybrid domain feature (HDF) by a deep feature interpolation method and discuss the characteristics of the hybrid domain feature. Then, we further design a triple domain strategy to align the distribution of the source domain, the hybrid domain, and the target domain. The experiments in the tasks of GTA5 to Cityscapes and SYNTHIA to Cityscapes demonstrate that the pro-posed HDL framework is robust to domain adaptation and outperforms the state-of-the-art approaches.(c) 2022 Published by Elsevier B.V.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 73 条
[1]   A theory of learning from different domains [J].
Ben-David, Shai ;
Blitzer, John ;
Crammer, Koby ;
Kulesza, Alex ;
Pereira, Fernando ;
Vaughan, Jennifer Wortman .
MACHINE LEARNING, 2010, 79 (1-2) :151-175
[2]   All about Structure: Adapting Structural Information across Domains for Boosting Semantic Segmentation [J].
Chang, Wei-Lun ;
Wang, Hui-Po ;
Peng, Wen-Hsiao ;
Chiu, Wei-Chen .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1900-1909
[3]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[4]   Domain Adaptation for Semantic Segmentation with Maximum Squares Loss [J].
Chen, Minghao ;
Xue, Hongyang ;
Cai, Deng .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :2090-2099
[5]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[6]   Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions Segmentation [J].
Dong, Jiahua ;
Cong, Yang ;
Sun, Gan ;
Yang, Yunsheng ;
Xu, Xiaowei ;
Ding, Zhengming .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) :2020-2033
[7]   SSF-DAN: Separated Semantic Feature based Domain Adaptation Network for Semantic Segmentation [J].
Du, Liang ;
Tan, Jingang ;
Yang, Hongye ;
Feng, Jianfeng ;
Xue, Xiangyang ;
Zheng, Qibao ;
Ye, Xiaoqing ;
Zhang, Xiaolin .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :982-991
[8]   Domain adaptation based on domain-invariant and class-distinguishable feature learning using multiple adversarial networks [J].
Fan, Cangning ;
Liu, Peng ;
Xiao, Ting ;
Zhao, Wei ;
Tang, Xianglong .
NEUROCOMPUTING, 2020, 411 :178-192
[9]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[10]  
Ganin Y, 2015, PR MACH LEARN RES, V37, P1180