Fairness in graph-based semi-supervised learning

被引:4
|
作者
Zhang, Tao [1 ]
Zhu, Tianqing [1 ]
Han, Mengde [1 ]
Chen, Fengwen [2 ]
Li, Jing [2 ]
Zhou, Wanlei [3 ]
Yu, Philip S. [4 ]
机构
[1] Univ Technol Sydney, Sch Comp Sci, Ctr Cyber Secur & Privacy, Sydney, NSW, Australia
[2] Univ Technol Sydney, Ctr Artificial Intelligence, Sydney, NSW, Australia
[3] City Univ Macau, Inst Data Sci, Macau, Madhya Pradesh, Peoples R China
[4] Univ Illinois, Dept Comp Sci, Chicago, IL USA
关键词
Fairness; Discrimination; Machine learning; Semi-supervised learning; BIAS;
D O I
10.1007/s10115-022-01738-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning is widely deployed in society, unleashing its power in a wide range of applications owing to the advent of big data. One emerging problem faced by machine learning is the discrimination from data, and such discrimination is reflected in the eventual decisions made by the algorithms. Recent study has proved that increasing the size of training (labeled) data will promote the fairness criteria with model performance being maintained. In this work, we aim to explore a more general case where quantities of unlabeled data are provided, indeed leading to a new form of learning paradigm, namely fair semi-supervised learning. Taking the popularity of graph-based approaches in semi-supervised learning, we study this problem both on conventional label propagation method and graph neural networks, where various fairness criteria can be flexibly integrated. Our developed algorithms are proved to be non-trivial extensions to the existing supervised models with fairness constraints. Extensive experiments on real-world datasets exhibit that our methods achieve a better trade-off between classification accuracy and fairness than the compared baselines.
引用
收藏
页码:543 / 570
页数:28
相关论文
共 50 条
  • [1] Fairness in graph-based semi-supervised learning
    Tao Zhang
    Tianqing Zhu
    Mengde Han
    Fengwen Chen
    Jing Li
    Wanlei Zhou
    Philip S Yu
    Knowledge and Information Systems, 2023, 65 : 543 - 570
  • [2] Graph-based semi-supervised learning
    Zhang, Changshui
    Wang, Fei
    ARTIFICIAL LIFE AND ROBOTICS, 2009, 14 (04) : 445 - 448
  • [3] Graph-based semi-supervised learning
    Subramanya, Amarnag
    Talukdar, Partha Pratim
    Synthesis Lectures on Artificial Intelligence and Machine Learning, 2014, 29 : 1 - 126
  • [4] Graph-based semi-supervised learning
    Changshui Zhang
    Fei Wang
    Artificial Life and Robotics, 2009, 14 (4) : 445 - 448
  • [5] On Consistency of Graph-based Semi-supervised Learning
    Du, Chengan
    Zhao, Yunpeng
    Wang, Feng
    2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, : 483 - 491
  • [6] Fractional Graph-based Semi-Supervised Learning
    de Nigris, S.
    Bautista, E.
    Abry, P.
    Avrachenkov, K.
    Gonclaves, P.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 356 - 360
  • [7] Graph-based semi-supervised learning: A review
    Chong, Yanwen
    Ding, Yun
    Yan, Qing
    Pan, Shaoming
    NEUROCOMPUTING, 2020, 408 (408) : 216 - 230
  • [8] Interactive Graph Construction for Graph-Based Semi-Supervised Learning
    Chen, Changjian
    Wang, Zhaowei
    Wu, Jing
    Wang, Xiting
    Guo, Lan-Zhe
    Li, Yu-Feng
    Liu, Shixia
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (09) : 3701 - 3716
  • [9] Graph-based semi-supervised learning with multiple labels
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2009, 20 (02) : 97 - 103
  • [10] Graph-Based Semi-Supervised Learning: A Comprehensive Review
    Song, Zixing
    Yang, Xiangli
    Xu, Zenglin
    King, Irwin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8174 - 8194