共 50 条
Including measures of chronic kidney disease to improve cardiovascular risk prediction by SCORE2 and SCORE2-OP
被引:26
|作者:
Matsushita, Kunihiro
[1
]
Kaptoge, Stephen
[2
]
Hageman, Steven H. J.
[3
]
Sang, Yingying
[1
]
Ballew, Shoshana H.
[1
]
Grams, Morgan E.
[1
]
Surapaneni, Aditya
[1
]
Sun, Luanluan
[2
]
Arnlov, Johan
[4
]
Bozic, Milica
[5
,6
]
Brenner, Hermann
[7
,8
]
Brunskill, Nigel J.
[9
]
Chang, Alex R.
[10
,11
]
Chinnadurai, Rajkumar
[12
]
Cirillo, Massimo
[13
]
Correa, Adolfo
[14
]
Ebert, Natalie
[15
]
Eckardt, Kai Uwe
[16
,17
]
Gansevoort, Ron T.
[18
]
Gutierrez, Orlando
[19
]
Hadaegh, Farzad
[20
]
He, Jiang
[21
]
Hwang, Shih Jen
[22
]
Jafar, Tazeen H.
[23
,24
,25
]
Jassal, Simerjot K.
[26
,27
]
Kayama, Takamasa
[28
]
Kovesdy, Csaba P.
[29
,30
]
Landman, Gijs W.
[31
]
Levey, Andrew S.
[32
]
Lloyd-Jones, Donald M.
[33
]
Major, Rupert W.
[9
]
Miura, Katsuyuki
[34
]
Muntner, Paul
[19
]
Nadkarni, Girish N.
[35
]
Nowak, Christoph
[4
]
Ohkubo, Takayoshi
[36
]
Pena, Michelle J.
[37
]
Polkinghorne, Kevan R.
[38
]
Sairenchi, Toshimi
[39
]
Schaeffner, Elke
[15
]
Schneider, Markus P.
[16
]
Shalev, Varda
[40
,41
]
Shlipak, Michael G.
[42
,43
]
Solbu, Marit D.
[44
,45
]
Stempniewicz, Nikita
[46
,47
]
Tollitt, James
[12
,48
]
Valdivielso, Jose M.
[5
,6
]
van der Leeuw, Joep
[3
]
Wang, Angela Yee Moon
[49
]
Wen, Chi Pang
[50
]
机构:
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD 21205 USA
[2] Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge, England
[3] Univ Med Ctr Utrecht, Dept Vasc Med, Utrecht, Netherlands
[4] Karolinska Inst, Dept Neurobiol Care Sci & Soc, Stockholm, Sweden
[5] IRBLleida, Vasc & Renal Translat Res Grp, Lleida, Spain
[6] Spanish Res Network Renal Dis RedInRen ISCIII, Lleida, Spain
[7] Heidelberg Univ, German Canc Res Ctr DKFZ, Div Clin Epidemiol & Aging Res, Heidelberg, Germany
[8] Heidelberg Univ, Network Aging Res, Heidelberg, Germany
[9] Univ Leicester, Univ Hosp Leicester NHS Trust, Leicester Gen Hosp, Dept Cardiovasc Sci,John Walls Renal Unit, Leicester, Leics, England
[10] Geisinger Med Ctr, Dept Nephrol, Danville, PA 17822 USA
[11] Geisinger Med Ctr, Kidney Hlth Res Inst Geisinger, Danville, PA 17822 USA
[12] Northern Care Alliance NHS Fdn Trust, Dept Renal Med, Salford Care Org, Salford, Lancs, England
[13] Univ Naples Federico II, Dept Publ Hlth, Naples, Italy
[14] Univ Mississippi Med Ctr, Jackson, MS USA
[15] Charite Univ Med Berlin, Inst Publ Hlth, Berlin, Germany
[16] Friedrich Alexander Univ Erlangen Nurnberg, Dept Nephrol & Hypertens, Erlangen, Germany
[17] Charite Univ Med Berlin, Dept Nephrol & Med Intens Care, Berlin, Germany
[18] Univ Groningen, Univ Med Ctr Groningen, Dept Nephrol, Groningen, Netherlands
[19] Univ Alabama Birmingham, Dept Epidemiol, Birmingham, AL USA
[20] Shahid Beheshti Univ Med Sci, Res Inst Endocrine Sci, Tehran, Iran
[21] Tulane Univ, Dept Epidemiol, Sch Publ Hlth & Trop Med, New Orleans, LA USA
[22] Natl Heart Lung & Blood Inst, Framingham, MA USA
[23] Duke Natl Univ Singapore Med Sch, Program Hlth Serv & Syst Res, Singapore, Singapore
[24] Aga Khan Univ, Dept Med, Karachi, Pakistan
[25] Duke Univ, Duke Global Hlth Inst, Durham, NC USA
[26] Univ Calif San Diego, Div Gen Internal Med, San Diego, CA 92103 USA
[27] VA San Diego Healthcare, San Diego, CA USA
[28] Yamagata Univ, Global Ctr Excellence, Fac Med, Yamagata, Japan
[29] Memphis Vet Affairs Med Ctr, Med Nephrol, Memphis, TN USA
[30] Univ Tennessee, Hlth Sci Ctr, Memphis, TN USA
[31] Gelre Hosp Locat, Apeldoorn, Netherlands
[32] Tufts Med Ctr, Div Nephrol, Boston, MA 02111 USA
[33] Northwestern Univ, Dept Prevent Med, Chicago, IL 60611 USA
[34] Shiga Univ Med Sci, NCD Epidemiol Res Ctr, Otsu, Shiga, Japan
[35] Icahn Sch Med Mt Sinai, Div Nephrol, Dept Med, New York, NY 10029 USA
[36] Teikyo Univ, Dept Hyg & Publ Hlth, Sch Med, Tokyo, Japan
[37] Univ Groningen, Univ Med Ctr Groningen, Dept Clin Pharm & Pharmacol, Groningen, Netherlands
[38] Monash Univ, Clayton, Vic, Australia
[39] Dokkyo Med Univ, Med Sci Nursing, Sch Nursing, Mibu, Tochigi, Japan
[40] Maccabi Healthcare Serv, Inst Hlth & Res & Innovat, Tel Aviv, Israel
[41] Tel Aviv Univ, Tel Aviv, Israel
[42] Univ Calif San Francisco, Kidney Hlth Res Collaborat, San Francisco, CA 94143 USA
[43] San Francisco VA Healthcare Syst, San Francisco, CA USA
[44] Univ Hosp North Norway, Sect Nephrol, Tromso, Norway
[45] UiT Arctic Univ Norway, Tromso, Norway
[46] AMGA Amer Med Grp Assoc, Alexandria, VA USA
[47] OptumLabs, Alexandria, VA USA
[48] Univ Manchester, Renal Dept, Oxford Rd, Manchester, Lancs, England
[49] Univ Hong Kong, Queen Mary Hosp, Dept Med, Hong Kong, Peoples R China
[50] China Med Univ Hosp, Taichung, Taiwan
关键词:
Chronic kidney disease;
Cardiovascular disease;
Risk prediction;
Meta-analysis;
GLOMERULAR-FILTRATION-RATE;
EPIDEMIOLOGY;
ALBUMINURIA;
MODEL;
D O I:
10.1093/eurjpc/zwac176
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Aims The 2021 European Society of Cardiology (ESC) guideline on cardiovascular disease (CVD) prevention categorizes moderate and severe chronic kidney disease (CKD) as high and very-high CVD risk status regardless of other factors like age and does not include estimated glomerular filtration rate (eGFR) and albuminuria in its algorithms, systemic coronary risk estimation 2 (SCORE2) and systemic coronary risk estimation 2 in older persons (SCORE2-OP), to predict CVD risk. We developed and validated an 'Add-on' to incorporate CKD measures into these algorithms, using a validated approach. Methods In 3,054 840 participants from 34 datasets, we developed three Add-ons [eGFR only, eGFR + urinary albumin-to-creatinine ratio (ACR) (the primary Add-on), and eGFR + dipstick proteinuria] for SCORE2 and SCORE2-OP. We validated C-statistics and net reclassification improvement (NRI), accounting for competing risk of non-CVD death, in 5,997 719 participants from 34 different datasets. Results In the target population of SCORE2 and SCORE2-OP without diabetes, the CKD Add-on (eGFR only) and CKD Add-on (eGFR + ACR) improved C-statistic by 0.006 (95%CI 0.004-0.008) and 0.016 (0.010-0.023), respectively, for SCORE2 and 0.012 (0.009-0.015) and 0.024 (0.014-0.035), respectively, for SCORE2-OP. Similar results were seen when we included individuals with diabetes and tested the CKD Add-on (eGFR + dipstick). In 57 485 European participants with CKD, SCORE2 or SCORE2-OP with a CKD Add-on showed a significant NRI [e.g. 0.100 (0.062-0.138) for SCORE2] compared to the qualitative approach in the ESC guideline. Conclusion Our Add-ons with CKD measures improved CVD risk prediction beyond SCORE2 and SCORE2-OP. This approach will help clinicians and patients with CKD refine risk prediction and further personalize preventive therapies for CVD.
引用
收藏
页码:8 / 16
页数:9
相关论文