Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy

被引:153
作者
De Sousa, Karina P. [1 ]
Rossi, Izadora [2 ,3 ]
Abdullahi, Mahamed [2 ]
Ramirez, Marcel Ivan [3 ,4 ]
Stratton, Dan [5 ]
Inal, Jameel Malhador [1 ,2 ]
机构
[1] Univ Hertfordshire, Sch Life & Med Sci, Biosci Res Grp, Hatfield, Herts, England
[2] London Metropolitan Univ, Sch Human Sci, London, England
[3] Univ Fed Parana, Curitiba, Parana, Brazil
[4] Carlos Chagas Inst ICC, Curitiba, Parana, Brazil
[5] Open Univ, Sch Life Hlth & Chem Sci, Milton Keynes, Bucks, England
关键词
EV analysis; EV characterization; EV therapeutics; extracellular vesicles; isolation methods; MEMBRANE-DERIVED VESICLES; RESONANCE ENERGY-TRANSFER; PROSTATE-CANCER; EXOSOME ISOLATION; HUMAN PLASMA; LIQUID-CHROMATOGRAPHY; TRANSFERRIN RECEPTOR; ELECTRON-MICROSCOPY; FLOW-CYTOMETRY; CELL BIOLOGY;
D O I
10.1002/wnan.1835
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease
引用
收藏
页数:29
相关论文
共 249 条
[1]   Comparative Analysis of Technologies for Quantifying Extracellular Vesicles (EVs) in Clinical Cerebrospinal Fluids (CSF) [J].
Akers, Johnny C. ;
Ramakrishnan, Valya ;
Nolan, John P. ;
Duggan, Erika ;
Fu, Chia-Chun ;
Hochberg, Fred H. ;
Chen, Clark C. ;
Carter, Bob S. .
PLOS ONE, 2016, 11 (02)
[2]   Human Plasma Membrane-Derived Vesicles Halt Proliferation and Induce Differentiation of THP-1 Acute Monocytic Leukemia Cells [J].
Ansa-Addo, Ephraim A. ;
Lange, Sigrun ;
Stratton, Dan ;
Antwi-Baffour, Samuel ;
Cestari, Igor ;
Ramirez, Marcel I. ;
McCrossan, Maria V. ;
Inal, Jameel M. .
JOURNAL OF IMMUNOLOGY, 2010, 185 (09) :5236-5246
[3]   Plasma mEV levels in Ghanain malaria patients with low parasitaemia are higher than those of healthy controls, raising the potential for parasite markers in mEVs as diagnostic targets [J].
Antwi-Baffour, Samuel ;
Malibha-Pinchbeck, Memory ;
Stratton, Dan ;
Jorfi, Samireh ;
Lange, Sigrun ;
Inal, Jameel .
JOURNAL OF EXTRACELLULAR VESICLES, 2020, 9 (01)
[4]   Human plasma membrane-derived vesicles inhibit the phagocytosis of apoptotic cells - Possible role in SLE [J].
Antwi-Baffour, Samuel ;
Kholia, Sharad ;
Aryee, Yushau K. -D. ;
Ansa-Addo, Ephraim A. ;
Stratton, Dan ;
Lange, Sigrun ;
Inal, Jameel M. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 398 (02) :278-283
[5]   Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species [J].
Baglio, Serena Rubina ;
Rooijers, Koos ;
Koppers-Lalic, Danijela ;
Verweij, Frederik J. ;
Lanzon, M. Perez ;
Zini, Nicoletta ;
Naaijkens, Benno ;
Perut, Francesca ;
Niessen, Hans W. M. ;
Baldini, Nicola ;
Pegtel, D. Michiel .
STEM CELL RESEARCH & THERAPY, 2015, 6
[6]   Biomechanical Properties of Blood Plasma Extracellular Vesicles Revealed by Atomic Force Microscopy [J].
Bairamukov, Viktor ;
Bukatin, Anton ;
Landa, Sergey ;
Burdakov, Vladimir ;
Shtam, Tatiana ;
Chelnokova, Irina ;
Fedorova, Natalia ;
Filatov, Michael ;
Starodubtseva, Maria .
BIOLOGY-BASEL, 2021, 10 (01) :1-10
[7]   Heparin affinity purification of extracellular vesicles [J].
Balaj, Leonora ;
Atai, Nadia A. ;
Chen, Weilin ;
Mu, Dakai ;
Tannous, Bakhos A. ;
Breakefield, Xandra O. ;
Skog, Johan ;
Maguire, Casey A. .
SCIENTIFIC REPORTS, 2015, 5
[8]   Analyzing the miRNA content of extracellular vesicles by fluorescence nanoparticle tracking [J].
Baldwin, Scott ;
Deighan, Clayton ;
Bandeira, Elga ;
Kwak, Kwang J. ;
Rahman, Mohammad ;
Nana-Sinkam, Patrick ;
Lee, L. James ;
Paulaitis, Michael E. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2017, 13 (02) :765-770
[9]   A perspective on the isolation and characterization of extracellular vesicles from different biofluids [J].
Bano, Reshma ;
Ahmad, Farhan ;
Mohsin, Mohd .
RSC ADVANCES, 2021, 11 (32) :19598-19615
[10]   Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods [J].
Baranyai, Tamas ;
Herczeg, Kata ;
Onodi, Zsofia ;
Voszka, Istvan ;
Modos, Karoly ;
Marton, Nikolett ;
Nagy, Gyoergy ;
Maeger, Imre ;
Wood, Matthew J. ;
El Andaloussi, Samir ;
Palinkas, Zoltan ;
Kumar, Vikas ;
Nagy, Pater ;
Kittel, Agnes ;
Buzas, Edit Iren ;
Ferdinandy, Peter ;
Giricz, Zoltan .
PLOS ONE, 2015, 10 (12)