Accuracy of the explicit energy-conserving particle-in-cell method for under-resolved simulations of capacitively coupled plasma discharges

被引:4
作者
Powis, A. T. [1 ]
Kaganovich, I. D. [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
关键词
FULLY IMPLICIT; LOW-FREQUENCY; MANAGEMENT; MODEL; ION; PERFORMANCE; ALGORITHM;
D O I
10.1063/5.0174168
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The traditional explicit electrostatic momentum-conserving particle-in-cell algorithm requires strict resolution of the electron Debye length to deliver numerical stability and accuracy. The explicit electrostatic energy-conserving particle-in-cell algorithm alleviates this constraint with minimal modification to the traditional algorithm, retaining its simplicity, ease of parallelization, and acceleration on modern supercomputing architectures. In this article, we apply the algorithm to model a one-dimensional radio frequency capacitively coupled plasma discharge relevant to industrial applications. The energy-conserving approach closely matches the results from the momentum-conserving algorithm and retains accuracy even for cell sizes up to 8 times the electron Debye length. For even larger cells, the algorithm loses accuracy due to poor resolution of steep gradients within the radio frequency sheath. Accuracy can be recovered by adopting a non-uniform grid, which resolves the sheath and allows for cell sizes up to 32 times the electron Debye length in the quasi-neutral bulk of the discharge. The effect is an up to 8 times reduction in the number of required simulation cells, an improvement that can compound in higher-dimensional simulations. We therefore consider the explicit energy-conserving algorithm as a promising approach to significantly reduce the computational cost of full-scale device simulations and a pathway to delivering kinetic simulation capabilities of use to industry.
引用
收藏
页数:17
相关论文
共 109 条
[1]   The 2022 Plasma Roadmap: low temperature plasma science and technology [J].
Adamovich, I ;
Agarwal, S. ;
Ahedo, E. ;
Alves, L. L. ;
Baalrud, S. ;
Babaeva, N. ;
Bogaerts, A. ;
Bourdon, A. ;
Bruggeman, P. J. ;
Canal, C. ;
Choi, E. H. ;
Coulombe, S. ;
Donko, Z. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hegemann, D. ;
Hori, M. ;
Kim, H-H ;
Kroesen, G. M. W. ;
Kushner, M. J. ;
Laricchiuta, A. ;
Li, X. ;
Magin, T. E. ;
Thagard, S. Mededovic ;
Miller, V ;
Murphy, A. B. ;
Oehrlein, G. S. ;
Puac, N. ;
Sankaran, R. M. ;
Samukawa, S. ;
Shiratani, M. ;
Simek, M. ;
Tarasenko, N. ;
Terashima, K. ;
Thomas, E., Jr. ;
Trieschmann, J. ;
Tsikata, S. ;
Turner, M. M. ;
van der Walt, I. J. ;
van de Sanden, M. C. M. ;
von Woedtke, T. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (37)
[2]  
Angus JR, 2022, J COMPUT PHYS, V456, DOI [10.1109/ICOPS45751.2022.9813107, 10.1016/j.jcp.2022.111030]
[3]   A new method for coalescing particles in PIC codes [J].
Assous, F ;
Dulimbert, TP ;
Segré, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (02) :550-571
[4]   Finite spatial-grid effects in energy-conserving particle-in-cell algorithms [J].
Barnes, D. C. ;
Chacon, L. .
COMPUTER PHYSICS COMMUNICATIONS, 2021, 258
[5]   IMPLICIT PARTICLE SIMULATION OF MAGNETIZED PLASMAS [J].
BARNES, DC ;
KAMIMURA, T ;
LEBOEUF, JN ;
TAJIMA, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 52 (03) :480-502
[6]   Electron dynamics in planar radio frequency magnetron plasmas: III. Comparison of experimental investigations of power absorption dynamics to simulation results [J].
Berger, B. ;
Eremin, D. ;
Oberberg, M. ;
Engel, D. ;
Woelfel, C. ;
Zhang, Q-Z ;
Awakowicz, P. ;
Lunze, J. ;
Brinkmann, R. P. ;
Schulze, J. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2023, 32 (04)
[7]  
Birdsall C K., 2005, Plasma Physics via Computer Simulation
[8]   PARTICLE-IN-CELL CHARGED-PARTICLE SIMULATIONS, PLUS MONTE-CARLO COLLISIONS WITH NEUTRAL ATOMS, PIC-MCC [J].
BIRDSALL, CK .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1991, 19 (02) :65-85
[9]  
Boris J., 1970, Proceedings of the Fourth Conference on Numerical Simulation of Plasmas
[10]   Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices [J].
Boyle, PC ;
Ellingboe, AR ;
Turner, MM .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (05) :697-701