Robust radiative cooling via surface phonon coupling-enhanced emissivity from SiO2 micropillar arrays

被引:22
作者
Ding, Zhenmin [1 ]
Li, Xin [1 ]
Zhang, Hulin [2 ]
Yan, Dukang [1 ]
Werle, Jeremy [4 ]
Song, Ying [1 ]
Pattelli, Lorenzo [3 ,4 ]
Zhao, Jiupeng [1 ]
Xu, Hongbo [1 ]
Li, Yao [2 ,5 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150001, Peoples R China
[3] Ist Nazl Ric Metrolog INRiM, I-10135 Turin, Italy
[4] Univ Florence, European Lab Nonlinear Spect LENS, I-50019 Sesto Fiorentino, Italy
[5] Suzhou Lab, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Radiative sky cooling; SiO 2 micropillars array; Thermal emissivity; Surface phonon coupling; Optical solar reflectors; FILM;
D O I
10.1016/j.ijheatmasstransfer.2023.125004
中图分类号
O414.1 [热力学];
学科分类号
摘要
Silicon dioxide (SiO2) is a prominent candidate for radiative cooling applications due to its low absorption in solar wavelengths (0.25-2.5 mu m) and exceptional stability. However, its bulk phonon-polariton band results in a strong reflection peak in the atmospheric transparency window (8-13 mu m), making it difficult to meet the requirements for sub-ambient passive radiative cooling. Herein, we demonstrate that SiO2 micropillar arrays can effectively suppress infrared reflection at 8-13 mu m and enhance the infrared emissivity by optimizing the micropillar array structure. We created a pattern with a height, spacing, and diameter of approximately 1.45 mu m, 0.15 mu m, and 0.35 mu m, respectively, on top of a bulk SiO2 substrate using reactive ion etching. The resulting surface phonon coupling of the micropillar array led to an increase in the thermal emissivity from 0.79 to 0.94. Outdoor tests show that the SiO2 cooler with an optimized micropillar array can generate an average temperature drop of 5.5 degrees C throughout the daytime underneath an irradiance of 843.1 W m  2 at noon. Furthermore, the micropillar arrays endow the SiO2 cooler with remarkable hydrophobic properties, attributed to the formation of F/C compounds introduced during the etching process. Finally, we also replicated the micropillar pattern onto the surface of industrial optical solar reflectors (OSRs), demonstrating similar emissivity and hydrophobicity enhancements. Our findings revealed an effective strategy for modifying the thermal management features of durable SiO2 layers, which can be harnessed to cool OSRs and other similar sky-facing devices.
引用
收藏
页数:9
相关论文
共 45 条
[1]   MODTRAN™ 5:: 2006 update [J].
Berk, Alexander ;
Anderson, Gail P. ;
Acharya, Prabhat K. ;
Bernstein, Lawrence S. ;
Muratov, Leon ;
Lee, Jamine ;
Fox, Marsha ;
Adler-Golden, Steve M. ;
Chetwynd, James H. ;
Hoke, Michael L. ;
Lockwood, Ronald B. ;
Gardner, James A. ;
Cooley, Thomas W. ;
Borel, Christoph C. ;
Lewis, Paul E. ;
Shettle, Eric P. .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
[2]   Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling [J].
Chae, Dongwoo ;
Kim, Mingeon ;
Jung, Pil-Hoon ;
Son, Soomin ;
Seo, Junyong ;
Liu, Yuting ;
Lee, Bong Jae ;
Lee, Heon .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) :8073-8081
[3]   Fabrication of a multifunctional antibacterial Cotton-based fabric for personal cooling [J].
Chen, Fan ;
Tian, Qirong ;
Wang, Tao ;
Ma, Leilei ;
Liu, Rongfei ;
Wang, Sheng .
APPLIED SURFACE SCIENCE, 2023, 609
[4]   A new study on passive radiative sky cooling resource maps of China [J].
Chen, Jianheng ;
Lu, Lin ;
Gong, Quan .
ENERGY CONVERSION AND MANAGEMENT, 2021, 237
[5]   Sub-ambient radiative cooling and its application in buildings [J].
Chen, Lufang ;
Zhang, Kai ;
Ma, Mingquan ;
Tang, Saihong ;
Li, Fei ;
Niu, Xiaofeng .
BUILDING SIMULATION, 2020, 13 (06) :1165-1189
[6]   Radiative cooling with multilayered periodic grating under sunlight [J].
Dai, Yuande ;
Zhang, Zhijian ;
Ma, Chunyang .
OPTICS COMMUNICATIONS, 2020, 475
[7]   A review of the development of colored radiative cooling surfaces [J].
Ding, Zhenmin ;
Li, Xin ;
Fan, Xueying ;
Xu, Miao ;
Zhao, Jiupeng ;
Li, Yao ;
Xu, Hongbo .
CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 4
[8]   Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range [J].
Ding, Zhenmin ;
Pattelli, Lorenzo ;
Xu, Hongbo ;
Sun, Wenhai ;
Li, Xin ;
Pan, Lei ;
Zhao, Jiupeng ;
Wang, Chengyu ;
Zhang, Xiang ;
Song, Ying ;
Qiu, Jun ;
Li, Yao ;
Yang, Ronggui .
SMALL, 2022, 18 (25)
[9]   RADIATIVE COOLING TO LOW-TEMPERATURES - GENERAL-CONSIDERATIONS AND APPLICATION TO SELECTIVELY EMITTING SIO FILMS [J].
GRANQVIST, CG ;
HJORTSBERG, A .
JOURNAL OF APPLIED PHYSICS, 1981, 52 (06) :4205-4220
[10]   Realization of selective low emittance in both thermal atmospheric windows -: art. no. 026001 [J].
Högström, H ;
Forssell, G ;
Ribbing, CG .
OPTICAL ENGINEERING, 2005, 44 (02) :1-7