PDZ scaffolds regulate extracellular vesicle production, composition, and uptake

被引:7
|
作者
Castro-Cruz, Monica [1 ,2 ]
Hyka, Lukas [1 ,2 ]
Daaboul, George [3 ]
Leblanc, Raphael [2 ]
Meeussen, Sofie [1 ]
Lembo, Frederique [2 ]
Oris, Anouk [1 ]
Van Herck, Lore [1 ]
Granjeaud, Samuel [2 ]
David, Guido [1 ,2 ]
Zimmermann, Pascale [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Human Genet, B-3000 Leuven, Belgium
[2] Aix Marseille Univ, Ctr Rech Cancerol Marseille, Inst Paoli Calmettes, Equipe Labellisee Ligue 2018,INSERM 1068,CNRS 725, F-13009 Marseille, France
[3] NanoView Biosci, Boston, MA 02135 USA
关键词
PDZ; syndecans; extracellular vesicles; tetraspanins; HEPARAN-SULFATE PROTEOGLYCAN; PLASMA-MEMBRANE; SYNTENIN; SYNDECAN; BIOGENESIS; DOMAINS; BINDING; PROTEIN; ASSOCIATION; EXOSOMES;
D O I
10.1073/pnas.2310914120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extracellular vesicles (EVs) are membrane-limited organelles mediating cell-to-cell communication in health and disease. EVs are of high medical interest, but their rational use for diagnostics or therapies is restricted by our limited understanding of the molecular mechanisms governing EV biology. Here, we tested whether PDZ proteins, molecular scaffolds that support the formation, transport, and function of signal transduction complexes and that coevolved with multicellularity, may represent important EV regulators. We reveal that the PDZ proteome (ca. 150 proteins in human) establishes a discrete number of direct interactions with the tetraspanins CD9, CD63, and CD81, well-known EV constituents. Strikingly, PDZ proteins interact more extensively with syndecans (SDCs), ubiquitous membrane proteins for which we previously demonstrated an important role in EV biogenesis, loading, and turnover. Nine PDZ proteins were tested in loss-of-function studies. We document that these PDZ proteins regulate both tetraspanins and SDCs, differentially affecting their steady-state levels, subcellular localizations, metabolism, endosomal budding, and accumulations in EVs. Importantly, we also show that PDZ proteins control the levels of heparan sulfate at the cell surface that functions in EV capture. In conclusion, our study establishes that the extensive networking of SDCs, tetraspanins, and PDZ proteins contributes to EV heterogeneity and turnover, highlighting an important piece of the molecular framework governing intracellular trafficking and intercellular communication.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Oncogenic RAS drives the CRAF-dependent extracellular vesicle uptake mechanism coupled with metastasis
    Choi, Dongsic
    Montermini, Laura
    Meehan, Brian
    Lazaris, Anthoula
    Metrakos, Peter
    Rak, Janusz
    JOURNAL OF EXTRACELLULAR VESICLES, 2021, 10 (08)
  • [32] Ciliary Rab28 and the BBSome negatively regulate extracellular vesicle shedding
    Akella, Jyothi S.
    Carter, Stephen P.
    Ken Nguyen
    Tsiropoulou, Sofia
    Moran, Ailis L.
    Silva, Malan
    Rizvi, Fatima
    Kennedy, Breandan N.
    Hall, David H.
    Barr, Maureen M.
    Blacque, Oliver E.
    ELIFE, 2020, 9
  • [33] 3D visualization of extracellular vesicle uptake by endothelial cells
    Martyna Durak-Kozica
    Zbigniew Baster
    Karol Kubat
    Ewa Stępień
    Cellular & Molecular Biology Letters, 2018, 23
  • [34] Extracellular vesicle release and uptake by the liver under normo- and hyperlipidemia
    Nemeth, Krisztina
    Varga, Zoltan
    Lenzinger, Dorina
    Visnovitz, Tamas
    Koncz, Anna
    Hegedus, Nikolett
    Kittel, Agnes
    Mathe, Domokos
    Szigeti, Krisztian
    Lorincz, Peter
    O'Neill, Clodagh
    Dwyer, Roisin
    Liu, Zhonglin
    Buzas, Edit I.
    Tamasi, Viola
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2021, 78 (23) : 7589 - 7604
  • [35] Fibronectin on extracellular vesicles from microvascular endothelial cells is involved in the vesicle uptake into oligodendrocyte precursor cells
    Osawa, Sho
    Kurachi, Masashi
    Yamamoto, Hanako
    Yoshimoto, Yuhei
    Ishizaki, Yasuki
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 488 (01) : 232 - 238
  • [36] Transfer of extracellular vesicle-microRNA controls germinal center reaction and antibody production
    Fernandez-Messina, Lola
    Rodriguez-Galan, Ana
    de Yebenes, Virginia G.
    Gutierrez-Vazquez, Cristina
    Tenreiro, Sandra
    Seabra, Miguel C.
    Ramiro, Almudena R.
    Sanchez-Madrid, Francisco
    EMBO REPORTS, 2020, 21 (04)
  • [37] Kinetics and Specificity of HEK293T Extracellular Vesicle Uptake using Imaging Flow Cytometry
    Jurgielewicz, Brian J.
    Yao, Yao
    Stice, Steven L.
    NANOSCALE RESEARCH LETTERS, 2020, 15 (01):
  • [38] PROBING EXTRACELLULAR VESICLE PRODUCTION PARAMETERS FOR OPTIMIZED NEUROREGENERATIVE CAPACITY
    Dutta, Dipankar
    Jay, Steven
    JOURNAL OF NEUROTRAUMA, 2021, 38 (14) : A110 - A111
  • [39] Inorganic Nanoparticles Change Cancer-Cell-Derived Extracellular Vesicle Secretion Levels and Cargo Composition, Resulting in Secondary Biological Effects
    Buttiens, Kiana
    Maksoudian, Christy
    Gilabert, Irati Perez
    Luci, Carla Rios
    Manshian, Bella B.
    Soenen, Stefaan J.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (01) : 66 - 83
  • [40] Advances in microglia cellular models: focus on extracellular vesicle production
    Ceccarelli, Lorenzo
    Marchetti, Laura
    Giacomelli, Chiara
    Martini, Claudia
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2021, 49 (04) : 1791 - 1802