PDZ scaffolds regulate extracellular vesicle production, composition, and uptake

被引:7
|
作者
Castro-Cruz, Monica [1 ,2 ]
Hyka, Lukas [1 ,2 ]
Daaboul, George [3 ]
Leblanc, Raphael [2 ]
Meeussen, Sofie [1 ]
Lembo, Frederique [2 ]
Oris, Anouk [1 ]
Van Herck, Lore [1 ]
Granjeaud, Samuel [2 ]
David, Guido [1 ,2 ]
Zimmermann, Pascale [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Human Genet, B-3000 Leuven, Belgium
[2] Aix Marseille Univ, Ctr Rech Cancerol Marseille, Inst Paoli Calmettes, Equipe Labellisee Ligue 2018,INSERM 1068,CNRS 725, F-13009 Marseille, France
[3] NanoView Biosci, Boston, MA 02135 USA
关键词
PDZ; syndecans; extracellular vesicles; tetraspanins; HEPARAN-SULFATE PROTEOGLYCAN; PLASMA-MEMBRANE; SYNTENIN; SYNDECAN; BIOGENESIS; DOMAINS; BINDING; PROTEIN; ASSOCIATION; EXOSOMES;
D O I
10.1073/pnas.2310914120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extracellular vesicles (EVs) are membrane-limited organelles mediating cell-to-cell communication in health and disease. EVs are of high medical interest, but their rational use for diagnostics or therapies is restricted by our limited understanding of the molecular mechanisms governing EV biology. Here, we tested whether PDZ proteins, molecular scaffolds that support the formation, transport, and function of signal transduction complexes and that coevolved with multicellularity, may represent important EV regulators. We reveal that the PDZ proteome (ca. 150 proteins in human) establishes a discrete number of direct interactions with the tetraspanins CD9, CD63, and CD81, well-known EV constituents. Strikingly, PDZ proteins interact more extensively with syndecans (SDCs), ubiquitous membrane proteins for which we previously demonstrated an important role in EV biogenesis, loading, and turnover. Nine PDZ proteins were tested in loss-of-function studies. We document that these PDZ proteins regulate both tetraspanins and SDCs, differentially affecting their steady-state levels, subcellular localizations, metabolism, endosomal budding, and accumulations in EVs. Importantly, we also show that PDZ proteins control the levels of heparan sulfate at the cell surface that functions in EV capture. In conclusion, our study establishes that the extensive networking of SDCs, tetraspanins, and PDZ proteins contributes to EV heterogeneity and turnover, highlighting an important piece of the molecular framework governing intracellular trafficking and intercellular communication.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Quantitative Analysis of Extracellular Vesicle Uptake and Fusion with Recipient Cells
    Hirose, Hisaaki
    Hirai, Yusuke
    Sasaki, Michihito
    Sawa, Hirofumi
    Futaki, Shiroh
    BIOCONJUGATE CHEMISTRY, 2022, 33 (10) : 1852 - 1859
  • [12] Effects of Pseudomonas aeruginosa on Microglial-Derived Extracellular Vesicle Biogenesis and Composition
    Jones, Leandra B.
    Kumar, Sanjay
    Bell, Courtnee' R.
    Peoples, Veolonda A.
    Crenshaw, Brennetta J.
    Coats, Mamie T.
    Scoffield, Jessica A.
    Rowe, Glenn C.
    Sims, Brian
    Matthews, Qiana L.
    PATHOGENS, 2019, 8 (04):
  • [13] Extracellular vesicle production: A bidirectional effect in the interplay between host and Candida fungi
    Kulig, Kamila
    Rapala-Kozik, Maria
    Karkowska-Kuleta, Justyna
    CURRENT RESEARCH IN MICROBIAL SCIENCES, 2024, 7
  • [14] Stage-specific follicular extracellular vesicle uptake and regulation of bovine granulosa cell proliferation
    Hung, Wei-Ting
    Navakanitworakul, Raphatphorn
    Khan, Tarique
    Zhang, Pan
    Davis, John S.
    McGinnis, Lynda K.
    Christenson, Lane K.
    BIOLOGY OF REPRODUCTION, 2017, 97 (04) : 644 - 655
  • [15] The role of biomechanical stress in extracellular vesicle formation, composition and activity
    Thompson, Will
    Papoutsakis, Eleftherios Terry
    BIOTECHNOLOGY ADVANCES, 2023, 66
  • [16] 3D visualization of extracellular vesicle uptake by endothelial cells
    Durak-Kozica, Martyna
    Baster, Zbigniew
    Kubat, Karol
    Stepien, Ewa
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2018, 23
  • [17] Monitoring extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry
    Ofir-Birin, Yifat
    Abou Karam, Paula
    Rudik, Ariel
    Giladi, Tal
    Porat, Ziv
    Regev-Rudzki, Neta
    FRONTIERS IN IMMUNOLOGY, 2018, 9
  • [18] Strategies to Enhance Extracellular Vesicle Production
    Hahm, Juhee
    Kim, Jonghoon
    Park, Jongmin
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2021, 18 (04) : 513 - 524
  • [19] Caspofungin Affects Extracellular Vesicle Production and Cargo in Candida auris
    Amatuzzi, Rafaela F.
    Zamith-Miranda, Daniel
    Munhoz da Rocha, Isadora F.
    Lucena, Aline C. R.
    Martins, Sharon de Toledo
    Streit, Rodrigo
    Staats, Charley C.
    Trentin, Gabriel
    Almeida, Fausto
    Rodrigues, Marcio L.
    Nosanchuk, Joshua D.
    Alves, Lysangela R.
    JOURNAL OF FUNGI, 2022, 8 (10)
  • [20] Coregulation of extracellular vesicle production and fluconazole susceptibility in Cryptococcus neoformans
    Rizzo, Juliana
    Trottier, Adele
    Moyrand, Frederique
    Coppee, Jean-Yves
    Maufrais, Corinne
    Zimbres, Ana Claudia G.
    Dang, Thi Tuong Vi
    Alanio, Alexandre
    Desnos-Ollivier, Marie
    Mouyna, Isabelle
    Pehau-Arnaude, Gerard
    Commere, Pierre-Henri
    Novault, Sophie
    Ene, Iuliana V.
    Nimrichter, Leonardo
    Rodrigues, Marcio L.
    Janbon, Guilhem
    MBIO, 2023, 14 (04): : e0087023