Normalization of the tumor microenvironment by harnessing vascular and immune modulation to achieve enhanced cancer therapy

被引:47
作者
Choi, Yechan [1 ]
Jung, Keehoon [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Biomed Sci, Seoul 03080, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Anat & Cell Biol, Seoul 03080, South Korea
[3] Seoul Natl Univ, Inst Allergy & Clin Immunol, Med Res Ctr, Seoul 03080, South Korea
基金
新加坡国家研究基金会;
关键词
ENDOTHELIAL GROWTH-FACTOR; IMMUNOGENIC CELL-DEATH; PANCREATIC-CANCER; ANTIANGIOGENIC THERAPY; PATROLLING MONOCYTES; VESSEL MATURATION; REDUCES HYPOXIA; DENDRITIC CELLS; DRUG-DELIVERY; NOTCH LIGAND;
D O I
10.1038/s12276-023-01114-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Solid tumors are complex entities that actively shape their microenvironment to create a supportive environment for their own growth. Angiogenesis and immune suppression are two key characteristics of this tumor microenvironment. Despite attempts to deplete tumor blood vessels using antiangiogenic drugs, extensive vessel pruning has shown limited efficacy. Instead, a targeted approach involving the judicious use of drugs at specific time points can normalize the function and structure of tumor vessels, leading to improved outcomes when combined with other anticancer therapies. Additionally, normalizing the immune microenvironment by suppressing immunosuppressive cells and activating immunostimulatory cells has shown promise in suppressing tumor growth and improving overall survival. Based on these findings, many studies have been conducted to normalize each component of the tumor microenvironment, leading to the development of a variety of strategies. In this review, we provide an overview of the concepts of vascular and immune normalization and discuss some of the strategies employed to achieve these goals. New insights into vascular and immune normalization strategies show potential for improving cancer therapy outcomes. In this review, authors discuss the current state of research on vascular and immune normalization in cancer treatment, highlighting the intricate relationship between these two processes. Vascular normalization aims to restore the integrity of tumor blood vessels, improving oxygenation and drug delivery, while immune normalization focuses on modulating the tumor immune microenvironment to suppress immunosuppression and recruit anti-tumoral immune cells. Various methods for achieving vascular normalization include targeting VEGF signaling, Ang-Tie signaling, oncogenic signaling in cancer cells, and even CD4 + T-cells. Strategies for immune normalization involve modulating the myeloid compartment, enhancing effector T cell function through cancer vaccines or immune checkpoint blockade, and using oncolytic viruses to target tumor cells. Combining these approaches may yield even greater efficacy in cancer treatment.
引用
收藏
页码:2308 / 2319
页数:12
相关论文
共 170 条
[1]   Tumor Hypoxia Regulates Immune Escape/Invasion: Influence on Angiogenesis and Potential Impact of Hypoxic Biomarkers on Cancer Therapies [J].
Abou Khouzam, Raefa ;
Brodaczewska, Klaudia ;
Filipiak, Aleksandra ;
Zeinelabdin, Nagwa Ahmed ;
Buart, Stephanie ;
Szczylik, Cezary ;
Kieda, Claudine ;
Chouaib, Salem .
FRONTIERS IN IMMUNOLOGY, 2021, 11
[2]   Vaccines Combined with Immune Checkpoint Antibodies Promote Cytotoxic T-cell Activity and Tumor Eradication [J].
Ali, Omar A. ;
Lewin, Sarah A. ;
Dranoff, Glenn ;
Mooney, David J. .
CANCER IMMUNOLOGY RESEARCH, 2016, 4 (02) :95-100
[3]   Bevacizumab-Induced Normalization of Blood Vessels in Tumors Hampers Antibody Uptake [J].
Arjaans, Marlous ;
Munnink, Thijs H. Oude ;
Oosting, Sjoukje F. ;
van Scheltinga, Anton G. T. Terwisscha ;
Gietema, Jourik A. ;
Garbacik, Erik T. ;
Timmer-Bosscha, Hetty ;
Lub-de Hooge, Marjolijn N. ;
Schroder, Carolina P. ;
de Vries, Elisabeth G. E. .
CANCER RESEARCH, 2013, 73 (11) :3347-3355
[4]   The angiogenic switch in carcinogenesis [J].
Baeriswyl, Vanessa ;
Christofori, Gerhard .
SEMINARS IN CANCER BIOLOGY, 2009, 19 (05) :329-337
[5]   MRI Assessment of Angiogenesis Inhibitor Sunitinib's Influence on Tumor Oxygenation to Identify an Optimal Chemoradiotherapeutic Window [J].
Batra, S. ;
Matsumoto, S. ;
Hyodo, F. ;
Mitchell, J. ;
Krishna, M. C. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 75 (03) :S43-S43
[6]   Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells [J].
Benkhoucha, Mahdia ;
Santiago-Raber, Marie-Laure ;
Schneiter, Gregory ;
Chofflon, Michel ;
Funakoshi, Hiroshi ;
Nakamura, Toshikazu ;
Lalive, Patrice H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (14) :6424-6429
[7]   Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells [J].
Benmebarek, Mohamed-Reda ;
Karches, Clara Helke ;
Cadilha, Bruno Loureiro ;
Lesch, Stefanie ;
Endres, Stefan ;
Kobold, Sebastian .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (06)
[8]   Novel Approaches to Acute Myeloid Leukemia Immunotherapy [J].
Beyar-Katz, Ofrat ;
Gill, Saar .
CLINICAL CANCER RESEARCH, 2018, 24 (22) :5502-5515
[9]   Understanding the tumor immune microenvironment (TIME) for effective therapy [J].
Binnewies, Mikhail ;
Roberts, Edward W. ;
Kersten, Kelly ;
Chan, Vincent ;
Fearon, Douglas F. ;
Merad, Miriam ;
Coussens, Lisa M. ;
Gabrilovich, Dmitry I. ;
Ostrand-Rosenberg, Suzanne ;
Hedrick, Catherine C. ;
Vonderheide, Robert H. ;
Pittet, Mikael J. ;
Jain, Rakesh K. ;
Zou, Weiping ;
Howcroft, T. Kevin ;
Woodhouse, Elisa C. ;
Weinberg, Robert A. ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (05) :541-550
[10]   Met, metastasis, motility and more [J].
Birchmeier, C ;
Birchmeier, W ;
Gherardi, E ;
Vande Woude, GF .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (12) :915-925