Numerical and experimental investigations of low-velocity impact on composite overwrapped pressure vessel with different stacking sequences

被引:2
作者
Akbar, Musthafa [1 ,2 ]
Kobayashi, Satoshi [1 ]
机构
[1] Tokyo Metropolitan Univ, Fac Syst Design, Dept Mech Syst Engn, Tokyo, Japan
[2] Univ Riau, Fac Engn, Dept Mech Engn, Pekanbaru, Riau, Indonesia
关键词
low-velocity impact; cohesive zone elements; Hashin damage model impact energy absorption; INTERNAL-PRESSURE; FAILURE CRITERIA; DAMAGE; RESISTANCE; SIMULATION; HYDROGEN; STORAGE;
D O I
10.1080/09243046.2023.2269743
中图分类号
TB33 [复合材料];
学科分类号
摘要
Composite overwrapped pressure vessels are designed to contain fluids that operate under high pressures. In addition to internal pressure, the design needs to account for out-of-plane loading in the form of low-velocity impact. In this study, a numerical analysis of four models of composite overwrapped pressure vessels with different stacking sequences is performed. A three-dimensional explicit finite element model using multi-layer stacked shell elements was used in the impact zone region to obtain reasonable computation time. Utilizing the bilinear traction-separation law, cohesive zone elements were used to simulate the delamination failure and as bonding between eight layers of CFRP covering the aluminum liner. The simulation results were then validated using drop-weight impact tests, which revealed that the response of contact force to impact time was comparable for both types of analysis. Prediction of failure was carried out by assessing the quantity of energy absorbed by the CFRP layers and was confirmed by shell element data that failed during simulations. In addition, the Hashin damage model confirmed that the matrix tensile failure mode was the predominant failure mode for all discussed impact scenarios. Model-A with Al + [90]8 stacking sequence was found to have the highest impact resistance based on the prediction of the composite's failure area and the energy absorbed by the CFRP layers. Furthermore, it was found that COPVs with combinations of helical and hoop sequences tend to have larger areas of delamination due to high interlaminar shear stress between the CFRP layers.
引用
收藏
页码:434 / 455
页数:22
相关论文
共 40 条
[1]   Design and development of a filament wound composite overwrapped pressure vessel [J].
Alam, Shah ;
Yandek, Gregory R. ;
Lee, Richard C. ;
Mabry, Joseph M. .
COMPOSITES PART C: OPEN ACCESS, 2020, 2
[2]  
Atul ST, 2016, 2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P430, DOI 10.1109/ICACCI.2016.7732083
[3]  
Coskun T., 2022, OSMANIYE KORKUT ATA, V5, P117, DOI DOI 10.47495/OKUFBED.1037011
[4]  
Dhaliwal G., 2016, J Dyn Behav Mater, V2, P181, DOI DOI 10.1007/S40870-016-0083-1
[5]   Compression after impact characteristics of carbon fiber reinforced aluminum laminates [J].
Dhaliwal, Gurpinder S. ;
Newaz, Golam M. .
COMPOSITE STRUCTURES, 2017, 160 :1212-1224
[6]   Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact [J].
Dogan, Fatih ;
Hadavinia, Homayoun ;
Donchev, Todor ;
Bhonge, Prasannakumar S. .
OPEN ENGINEERING, 2012, 2 (04) :612-626
[7]  
Dutta S, 2014, J IND ENG CHEM, V20, P1148
[8]   Thickness effect study on the crushing characteristics of aluminum and composite tubes: Numerical analysis and multi-objective optimization [J].
Emadi, Majid ;
Beheshti, Hamid ;
Heidari-Rarani, Mohammad .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2021, 28 (24) :2585-2594
[9]   Simulation Analysis of Delamination Damage for the Thick-Walled Composite-Overwrapped Pressure Vessels [J].
Fang, Houcheng ;
Wang, Di .
MATERIALS, 2022, 15 (19)
[10]   LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen [J].
Feraboli, Paolo ;
Wade, Bonnie ;
Deleo, Francesco ;
Rassaian, Mostafa ;
Higgins, Mark ;
Byar, Alan .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2011, 42 (11) :1809-1825