Identifying optimal architectures of physics-informed neural networks by evolutionary strategy

被引:7
|
作者
Kaplarevic-Malisic, Ana [1 ]
Andrijevic, Branka [1 ]
Bojovic, Filip [1 ]
Nikolic, Srdan [1 ]
Krstic, Lazar [1 ]
Stojanovic, Boban [1 ]
Ivanovic, Milos [1 ]
机构
[1] Univ Kragujevac, Fac Sci, Radoja Domanovica 12, Kragujevac 34000, Serbia
关键词
PINNs; Automatic design; Evolutionary strategy; GA; FRAMEWORK; SYSTEM;
D O I
10.1016/j.asoc.2023.110646
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physics-Informed Neural Networks (PINNs) are artificial neural networks that encode Partial Differential Equations (PDEs) as an integral component of the ML model. PINNs are successfully used nowadays to solve PDEs, fractional equations, and integral-differential equations, including direct and inverse problems. Just as in the case of other kinds of artificial neural networks, the architecture, including the number and sizes of layers, activation functions, and other hyperparameters can significantly influence the network performance. Despite the serious work in this field, there are still no clear directions on how to choose an optimal network architecture in a consistent manner. In practice, expertise is required, with a significant number of manual trial and error cycles. In this paper, we propose PINN/GA (PINN/Genetic Algorithm), a fully automatic design of a PINN by an evolutionary strategy with specially tailored operators of selection, crossover, and mutation, adapted for deep neural network architecture and hyperparameter search. The PINN/GA strategy starts from the population of simple PINNs, adding new layers only if it brings clear accuracy benefits, keeping PINNs in the population as simple as possible. Since the examination of dozens of neural networks through the evolutionary process implies enormous computational costs, it employs a scalable computational design based on containers and Kubernetes batching orchestration. To demonstrate the potential of the proposed approach, we chose two non-trivial direct problems. The first is 1D Stefan transient model with time-dependent Dirichlet boundary conditions, describing the melting process, and the second is the Helmholtz wave equation over a 2D square domain. The authors found that PINNs accuracy gradually improves throughout the evolutionary process, exhibiting better performance and stability than parallel random search and Hyperopt Tree of Parzen Estimators, while keeping the network design reasonably simple. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Physics-informed neural networks for an optimal counterdiabatic quantum computation
    Ferrer-Sanchez, Antonio
    Flores-Garrigos, Carlos
    Hernani-Morales, Carlos
    Orquin-Marques, Jose J.
    Hegade, Narendra N.
    Cadavid, Alejandro Gomez
    Montalban, Iraitz
    Solano, Enrique
    Vives-Gilabert, Yolanda
    Martin-Guerrero, Jose D.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [2] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [3] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [4] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [5] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [6] Identifying constitutive parameters for complex hyperelastic materials using physics-informed neural networks
    Song, Siyuan
    Jin, Hanxun
    SOFT MATTER, 2024, 20 (30) : 5915 - 5926
  • [7] Physics-Informed Evolutionary Strategy Based Control for Mitigating Delayed Voltage Recovery
    Du, Yan
    Huang, Qiuhua
    Huang, Renke
    Yin, Tianzhixi
    Tan, Jie
    Yu, Wenhao
    Li, Xinya
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (05) : 3516 - 3527
  • [8] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [9] iPINNs: incremental learning for Physics-informed neural networks
    Dekhovich, Aleksandr
    Sluiter, Marcel H. F.
    Tax, David M. J.
    Bessa, Miguel A.
    ENGINEERING WITH COMPUTERS, 2025, 41 (01) : 389 - 402
  • [10] Towards physics-informed neural networks for landslide prediction
    Dahal, Ashok
    Lombardo, Luigi
    ENGINEERING GEOLOGY, 2025, 344