Research Progress of Liquid Electrolytes for Lithium Metal Batteries at High Temperatures

被引:21
作者
Nie, Qianna [1 ]
Luo, Wenlei [2 ]
Li, Yong [3 ]
Yang, Cheng [3 ]
Pei, Haijuan [3 ]
Guo, Rui [3 ]
Wang, Wei [1 ]
Ajdari, Farshad Boorboor [1 ,4 ]
Song, Jiangxuan [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Acad Mil Sci, Natl innovat Inst Def technol, Beijing 100071, Peoples R China
[3] Shanghai Inst Space Power Sources, State Key Lab Space Power Sources Technol, Shanghai 200245, Peoples R China
[4] Univ Kashan, Inst Nano Sci & Nano Technol, POB 87317-51167, Kashan, Iran
基金
中国国家自然科学基金;
关键词
electrolytes; high temperatures; lithium metal batteries; FLUOROETHYLENE CARBONATE; HIGH-VOLTAGE; HIGH-ENERGY; LIPF6; ELECTROLYTES; ION BATTERY; LI; PERFORMANCE; SALT; INTERPHASE; SOLVATION;
D O I
10.1002/smll.202302690
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal batteries (LMBs) are the most promising high energy density energy storage technologies for electric vehicles, military, and aerospace applications. LMBs require further improvement to operate efficiently when chronically or routinely exposed to high temperatures. Electrolyte engineering with high temperature tolerance and electrode compatibility has been essential to the development of LMBs. In this review, the primary obstacles to achieving high-temperature LMBs are first explored. Subsequently, electrolyte tailoring options, such as lithium salt optimization, solvation structure modification, and the addition of additives are reviewed in detail. In addition, the feasibility of utilizing LMBs at high temperatures has been investigated. In conclusion, this study provides insights and perspectives for future research on electrolyte design at high temperatures.
引用
收藏
页数:16
相关论文
共 100 条
[11]  
Chen T., 2022, Angew. Chem., V61
[12]   Applying Machine Learning to Rechargeable Batteries: From the Microscale to the Macroscale [J].
Chen, Xiang ;
Liu, Xinyan ;
Shen, Xin ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (46) :24354-24366
[13]   A Highly Reversible, Dendrite-Free Lithium Metal Anode Enabled by a Lithium-Fluoride-Enriched Interphase [J].
Cui, Chunyu ;
Yang, Chongyin ;
Eidson, Nico ;
Chen, Ji ;
Han, Fudong ;
Chen, Long ;
Luo, Chao ;
Wang, Peng-Fei ;
Fan, Xiulin ;
Wang, Chunsheng .
ADVANCED MATERIALS, 2020, 32 (12)
[14]   Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage [J].
Dahbi, Mouad ;
Ghamouss, Fouad ;
Tran-Van, Francois ;
Lemordant, Daniel ;
Anouti, Meriem .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9743-9750
[15]   All-Solid-State Thin-Film Lithium-Sulfur Batteries [J].
Deng, Renming ;
Ke, Bingyuan ;
Xie, Yonghui ;
Cheng, Shoulin ;
Zhang, Congcong ;
Zhang, Hong ;
Lu, Bingan ;
Wang, Xinghui .
NANO-MICRO LETTERS, 2023, 15 (01)
[16]   Recent Advances and Applications Toward Emerging Lithium-Sulfur Batteries: Working Principles and Opportunities [J].
Deng, Rongyu ;
Wang, Meng ;
Yu, Huanyu ;
Luo, Shunrui ;
Li, Jinhui ;
Chu, Fulu ;
Liu, Bin ;
Wu, Feixiang .
ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (03) :777-799
[17]   Non-Solvating and Low-Dielectricity Cosolvent for Anion-Derived Solid Electrolyte Interphases in Lithium Metal Batteries [J].
Ding, Jun-Fan ;
Xu, Rui ;
Yao, Nan ;
Chen, Xiang ;
Xiao, Ye ;
Yao, Yu-Xing ;
Yan, Chong ;
Xie, Jin ;
Huang, Jia-Qi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (20) :11442-11447
[18]   Adiponitrile-based electrolytes for high voltage, graphite-based Li-ion battery [J].
Ehteshami, Niloofar ;
Eguia-Barrio, Aitor ;
de Meatza, Iratxe ;
Porcher, Willy ;
Paillard, Elie .
JOURNAL OF POWER SOURCES, 2018, 397 :52-58
[19]   Modeling and theoretical design of next-generation lithium metal batteries [J].
Fan, Yanchen ;
Chen, Xiang ;
Legut, Dominik ;
Zhang, Qianfan .
ENERGY STORAGE MATERIALS, 2019, 16 :169-193
[20]   Key Issues Hindering a Practical Lithium-Metal Anode [J].
Fang, Chengcheng ;
Wang, Xuefeng ;
Meng, Ying Shirley .
TRENDS IN CHEMISTRY, 2019, 1 (02) :152-158