Photocurable 3D-Printed PMBG/TCP Scaffold Coordinated with PTH (1-34) Bidirectionally Regulates Bone Homeostasis to Accelerate Bone Regeneration

被引:8
|
作者
Ren, Ya [1 ,2 ]
Kong, Weiqing [3 ]
Liu, Yihao [2 ]
Yang, Xue [1 ]
Xu, Xiang [1 ]
Qiang, Lei [4 ]
Mi, Xuelian [1 ]
Zhang, Changru [2 ,5 ]
Niu, Haoyi [2 ]
Wang, Chengwei [2 ,6 ]
Wang, Jinwu [1 ,2 ]
机构
[1] Southwest Jiaotong Univ, Coll Med, 111 Second Ring Rd,North Sect 1, Chengdu 610036, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Dept Orthopaed Surg,Shanghai Key Lab Orthopaed Imp, 639 Zhizaoju Rd, Shanghai 200011, Peoples R China
[3] Qingdao Univ, Affiliated Hosp, Dept Spinal Surg, 59 Haier Rd, Qingdao 266000, Shandong, Peoples R China
[4] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China
[5] Shanghai Jiao Tong Univ, Inst Translat Med, 800 DongChuan Rd, Shanghai 200240, Peoples R China
[6] Shanghai Beierkang Biomed Technol Co LTD, 515 Shennan Rd, Shanghai 201108, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 国家重点研发计划;
关键词
bone repair; fibrogenic activating proteins; parathyroid hormone (1-34); photo-cured mesoporous bioactive glasses; IN-VITRO; RESORPTION; DELIVERY;
D O I
10.1002/adhm.202300292
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Bone defect repair remains a major clinical challenge that requires the construction of scaffolds that can regulate bone homeostasis. In this study, a photo-cured mesoporous bioactive glass (PMBG) precursor is developed as a tricalcium phosphate (TCP) agglomerant to obtain a double-phase PMBG/TCP scaffold via 3D printing. The scaffold exhibits multi-scale porous structures and large surface areas, making it a suitable carrier for the loading of parathyroid hormone (PTH) (1-34), which is used for the treatment of osteoporosis. In vitro and in vivo results demonstrate that PMBG/TCP scaffolds coordinated with PTH (1-34) can regulate bone homeostasis in a bidirectional manner to facilitate bone formation and inhibit bone resorption. Furthermore, bidirectional regulation of bone homeostasis by PTH (1-34) is achieved by inhibiting fibrogenic activation protein (FAP). Thus, PMBG/TCP scaffolds coordinated with PTH (1-34) are viable materials with considerable potential for application in the field of bone regeneration and provide an excellent solution for the design and development of clinical materials.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Photocurable 3D-printed PMBG/TCP biphasic scaffold mimicking vasculature for bone regeneration
    Zhang, Changru
    Ren, Ya
    Kong, Weiqing
    Liu, Yihao
    Li, Heyue
    Yang, Han
    Cai, Bin
    Dai, Kerong
    Wang, Chengwei
    Tang, Liang
    Niu, Haoyi
    Wang, Jinwu
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (05) : 369 - 386
  • [2] 3D-printed vascularized biofunctional scaffold for bone regeneration
    Cao, Bojun
    Lin, Jieming
    Tan, Jia
    Li, Jiaxin
    Ran, Zhaoyang
    Deng, Liang
    Hao, Yongqiang
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (03) : 185 - 199
  • [3] Electrospun/3D-printed PCL bioactive scaffold for bone regeneration
    Rosales-Ibanez, Raul
    Viera-Ruiz, Alejandro Emmanuel
    Cauich-Rodriguez, Juan Valerio
    Carrillo-Escalante, Hugo Joel
    Gonzalez-Gonzalez, Arely
    Rodriguez-Martinez, Jesus Jiovanni
    Hernandez-Sanchez, Fernando
    POLYMER BULLETIN, 2023, 80 (03) : 2533 - 2552
  • [4] Electrospun/3D-printed PCL bioactive scaffold for bone regeneration
    Raúl Rosales-Ibáñez
    Alejandro Emmanuel Viera-Ruiz
    Juan Valerio Cauich-Rodríguez
    Hugo Joel Carrillo-Escalante
    Arely González-González
    Jesús Jiovanni Rodríguez-Martínez
    Fernando Hernández-Sánchez
    Polymer Bulletin, 2023, 80 : 2533 - 2552
  • [5] Biomimetic Mineralized 3D-Printed Polycaprolactone Scaffold Induced by Self-Adaptive Nanotopology to Accelerate Bone Regeneration
    Shen, Hui-Yuan
    Xing, Fei
    Shang, Si-Yuan
    Jiang, Kai
    Kuzmanovic, Maja
    Huang, Fu-Wen
    Liu, Yao
    Luo, En
    Edeleva, Mariya
    Cardon, Ludwig
    Huang, Shishu
    Xiang, Zhou
    Xu, Jia-Zhuang
    Li, Zhong-Ming
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (15) : 18658 - 18670
  • [6] 3D-printed bone regeneration scaffolds modulate bone metabolic homeostasis through vascularization for osteoporotic bone defects
    Yan, Caiping
    Zhang, Pengrui
    Qin, Qiwei
    Jiang, Ke
    Luo, Yue
    Xiang, Chao
    He, Jiangtao
    Chen, Lu
    Jiang, Dianming
    Cui, Wenguo
    Li, Yuling
    BIOMATERIALS, 2024, 311
  • [7] A Composite Lactide-Mineral 3D-Printed Scaffold for Bone Repair and Regeneration
    Fairag, Rayan
    Li, Li
    Ramirez-GarciaLuna, Jose Luis
    Taylor, M. Scott
    Gaerke, Brian
    Weber, Michael H.
    Rosenzweig, Derek H.
    Haglund, Lisbet
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [8] Nanostructured 3D-Printed Hybrid Scaffold Accelerates Bone Regeneration by Photointegrating Nanohydroxyapatite
    Tong, Lei
    Pu, Xiaocong
    Liu, Quanying
    Li, Xing
    Chen, Manyu
    Wang, Peilei
    Zou, Yaping
    Lu, Gonggong
    Liang, Jie
    Fan, Yujiang
    Zhang, Xingdong
    Sun, Yong
    ADVANCED SCIENCE, 2023, 10 (13)
  • [9] Characterization of 3D-printed graphene-reinforced PLA scaffold for bone regeneration
    Karthic, Manoharan
    Chockalingam, Kunjan
    Vignesh, Chandran
    Nagarajan, K. Jawaharlal
    EMERGING MATERIALS RESEARCH, 2023, 12 (04) : 1 - 13
  • [10] Bioinspired Bone Seed 3D-Printed Scaffold via Trapping Black Phosphorus Nanosheet for Bone Regeneration
    Cai, Zhengwei
    Chen, Zhijie
    Tang, Yuan
    Cheng, Liang
    Qiu, Minglong
    Wang, Ningtao
    Jiang, Wei
    Li, Zhanchun
    Pereira, Catarina Leite
    Zhang, Yunhai
    Sarmento, Bruno
    Cui, Wenguo
    SMALL SCIENCE, 2024, 4 (06):