ANOTHER CLASS OF CR-SLANT WARPED PRODUCT SUBMANIFOLDS IN NEARLY TRANS-SASAKIAN MANIFOLDS

被引:0
作者
Alqahtani, Lamia Saeed [1 ]
Almudawi, Afrah A. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2023年 / 76卷 / 06期
关键词
warped products; CR-warped product; CR-slant warped product; slant submanifolds; nearly Sasakian; nearly Kenmotsu; nearly trans-Sasakian manifolds; GEOMETRY;
D O I
10.7546/CRABS.2023.06.02
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study a CR-slant warped product submanifold of the type B xf M & theta;, where M & theta; is a slant and B is a CR-product submanifold in a nearly trans-Sasakian manifold. We obtain an inequality for the squared norm of the second fundamental form in two cases, depending on the structure vector field affiliation, in such warped products. The equality case is also considered.
引用
收藏
页码:827 / 838
页数:12
相关论文
共 12 条
[1]   GEOMETRY OF CR-SLANT WARPED PRODUCTS IN NEARLY TRANS-SASAKIAN MANIFOLDS [J].
Alqahtani, Lamia S. ;
Stankovic, Mica S. .
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2023, 76 (01) :12-22
[2]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[3]   Semi-slant submanifolds of a Sasakian manifold [J].
Cabrerizo, JL ;
Carriazo, A ;
Fernández, LM ;
Fernández, M .
GEOMETRIAE DEDICATA, 1999, 78 (02) :183-199
[4]   Slant submanifolds in Sasakian manifolds [J].
Cabrerizo, JL ;
Carriazo, A ;
Fernández, LM ;
Fernández, M .
GLASGOW MATHEMATICAL JOURNAL, 2000, 42 :125-138
[5]   GEOMETRY OF POINTWISE CR-SLANT WARPED PRODUCTS IN KAEHLER MANIFOLDS [J].
Chen, Bang-Yen ;
Uddin, Siraj ;
Al-Solamy, Falleh R. .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2020, 61 (02) :353-365
[6]  
Chen BY, 2000, HANDBOOK OF DIFFERENTIAL GEOMETRY, VOL I, P187, DOI 10.1016/S1874-5741(00)80006-0
[7]  
do Carmo M, 1976, Differential Geometry of Curves and Surfaces
[8]  
Gherghe C., 2000, Demonstratio Mathematica, V33, P151, DOI [10.1515/dema-2000-0118, DOI 10.1515/DEMA-2000-0118]
[9]  
ONeill B., 1983, SEMIRIEMANNIAN GEOME
[10]  
Sahin B, 2010, MATH COMMUN, V15, P189