Large-scale density and velocity field reconstructions with neural networks

被引:6
作者
Ganeshaiah Veena, Punyakoti [1 ]
Lilow, Robert [1 ]
Nusser, Adi [1 ]
机构
[1] Technion, Dept Phys, IL-3200003 Haifa, Israel
基金
以色列科学基金会;
关键词
methods: data analysis; galaxies: statistics; cosmology: observations; dark matter; large-scale structure of Universe; GALAXY REDSHIFT SURVEY; ESTIMATING PHOTOMETRIC REDSHIFTS; TULLY-FISHER CATALOG; GROWTH-RATE; WIENER RECONSTRUCTION; PECULIAR VELOCITIES; DATA RELEASE; IRAS-GALAXIES; GRAVITATIONAL-INSTABILITY; COSMOLOGICAL PARAMETERS;
D O I
10.1093/mnras/stad1222
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We assess a neural network (NN) method for reconstructing 3D cosmological density and velocity fields (target) from discrete and incomplete galaxy distributions (input). We employ second-order Lagrangian Perturbation Theory to generate a large ensemble of mock data to train an auto-encoder (AE) architecture with a Mean Squared Error (MSE) loss function. The AE successfully captures non-linear features arising from gravitational dynamics and the discreteness of the galaxy distribution. It preserves the positivity of the reconstructed density field and exhibits a weaker suppression of the power on small scales than the traditional linear Wiener filter (WF), which we use as a benchmark. In the density reconstruction, the reduction of the AE MSE relative to the WF is similar to 15 per cent , whereas for the velocity reconstruction a relative reduction of up to a factor of two can be achieved. The AE is advantageous to the WF at recovering the distribution of the target fields, especially at the tails. In fact, trained with an MSE loss, any NN estimate approaches the unbiased mean of the underlying target given the input. This implies a slope of unity in the linear regression of the true on the NN-reconstructed field. Only for the special case of Gaussian fields, the NN and WF estimates are equi v alent. Nonetheless, we also reco v er a linear regression slope of unity for the WF with non-Gaussian fields.
引用
收藏
页码:5291 / 5307
页数:17
相关论文
共 50 条
  • [1] A slight excess of large-scale power from moments of the peculiar velocity field
    Macaulay, E.
    Feldman, H.
    Ferreira, P. G.
    Hudson, M. J.
    Watkins, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 414 (01) : 621 - 626
  • [2] Fast Hamiltonian sampling for large-scale structure inference
    Jasche, Jens
    Kitaura, Francisco S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 407 (01) : 29 - 42
  • [3] The large-scale velocity field from the Cosmicflows-4 data
    Hoffman, Yehuda
    Valade, Aurelien
    Libeskind, Noam I.
    Sorce, Jenny G.
    Tully, R. Brent
    Pfeifer, Simon
    Gottloeber, Stefan
    Pomarede, Daniel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (02) : 3788 - 3805
  • [4] Classifying the large-scale structure of the universe with deep neural networks
    Aragon-Calvo, M. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (04) : 5771 - 5784
  • [5] Testing the minimum variance method for estimating large-scale velocity moments
    Agarwal, Shankar
    Feldman, Hume A.
    Watkins, Richard
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 424 (04) : 2667 - 2675
  • [6] Large-scale density from velocity expansion and shear
    Chodorowski, MJ
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1997, 292 (03) : 695 - 702
  • [7] Modelling the large-scale mass density field of the universe as a function of cosmology and baryonic physics
    Arico, Giovanni
    Angulo, Raul E.
    Hernandez-Monteagudo, Carlos
    Contreras, Sergio
    Zennaro, Matteo
    Pellejero-Ibanez, Marcos
    Rosas-Guevara, Yetli
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 495 (04) : 4800 - 4819
  • [8] (DarkAI) Mapping the large-scale density field of dark matter using artificial intelligence
    Wang, Zitong
    Shi, Feng
    Yang, Xiaohu
    Li, Qingyang
    Liu, Yanming
    Li, Xiaoping
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (01)
  • [9] Bayesian power-spectrum inference for large-scale structure data
    Jasche, Jens
    Kitaura, Francisco S.
    Wandelt, Benjamin D.
    Ensslin, Torsten A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 406 (01) : 60 - 85
  • [10] Structural analysis of the SDSS Cosmic Web - I. Non-linear density field reconstructions
    Platen, Erwin
    van de Weygaert, Rien
    Jones, Bernard J. T.
    Vegter, Gert
    Calvo, Miguel A. Aragon
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 416 (04) : 2494 - 2526