Estimate of transition kernel for Euler-Maruyama scheme for SDEs driven by ?-stable noise and applications

被引:0
作者
Huang, Xing [1 ]
Suo, Yongqiang [2 ]
Yuan, Chenggui [3 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
[3] Swansea Univ, Dept Math, Bay Campus, Swansea SA1 8EN, Wales
关键词
Zvonkin's transformation; Euler-Maruyama scheme; Transition kernel; Krylov's estimate; STOCHASTIC DIFFERENTIAL-EQUATIONS; MULTIDIMENSIONAL SDES; DEGENERATE SDES; SINGULAR DRIFT; CONVERGENCE;
D O I
10.1007/s11075-023-01539-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the discrete parametrix method is adopted to investigate the estimation of transition kernel for Euler-Maruyama scheme SDEs driven by a-stable noise, which implies Krylov's estimate and Khasminskii's estimate. As an application, the convergence rate of Euler-Maruyama scheme for a class of multidimensional SDEs with singular drift (by the use of Zvonkin's transformation) is obtained.
引用
收藏
页码:1381 / 1402
页数:22
相关论文
共 34 条
[1]   Convergence rate of the EM algorithm for SDEs with low regular drifts [J].
Bao, Jianhai ;
Huang, Xing ;
Zhang, Shao-Qin .
JOURNAL OF APPLIED PROBABILITY, 2022, 59 (02) :447-470
[2]   Convergence Rate of Euler-Maruyama Scheme for SDEs with Holder-Dini Continuous Drifts [J].
Bao, Jianhai ;
Huang, Xing ;
Yuan, Chenggui .
JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (02) :848-871
[3]  
Blumenthal R.M., 1960, T AM MATH SOC, V95, P263, DOI [10.1090/S0002-9947-1960-0119247-6, 10.2307/1993291]
[4]   Heat kernels for time-dependent non-symmetric stable-like operators [J].
Chen, Zhen-Qing ;
Zhang, Xicheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (01) :1-21
[5]   Heat kernels and analyticity of non-symmetric jump diffusion semigroups [J].
Chen, Zhen-Qing ;
Zhang, Xicheng .
PROBABILITY THEORY AND RELATED FIELDS, 2016, 165 (1-2) :267-312
[6]   ON TAMED EULER APPROXIMATIONS OF SDES DRIVEN BY LEVY NOISE WITH APPLICATIONS TO DELAY EQUATIONS [J].
Dareiotis, Konstantinos ;
Kumar, Chaman ;
Sabanis, Sotirios .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) :1840-1872
[7]   Flow of diffeomorphisms for SDEs with unbounded Holder continuous drift [J].
Flandoli, F. ;
Gubinelli, M. ;
Priola, E. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (04) :405-422
[8]   The Euler scheme for stochastic differential equations with discontinuous drift coefficient: a numerical study of the convergence rate [J].
Goettlich, S. ;
Lux, K. ;
Neuenkirch, A. .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
[9]   On stochastic differential equations with locally unbounded drift [J].
Gyöngy, I ;
Martínez, T .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (04) :763-783
[10]   A note on the Euler-Maruyama scheme for stochastic differential equations with a discontinuous monotone drift coefficient [J].
Halidias, Nikolaos ;
Kloeden, Peter E. .
BIT NUMERICAL MATHEMATICS, 2008, 48 (01) :51-59