Promoting Monocular Depth Estimation by Multi-Scale Residual Laplacian Pyramid Fusion

被引:2
作者
Zhang, Anmei [1 ]
Ma, Yunchao [2 ]
Liu, Jiangyu [2 ]
Sun, Jian [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Megvii, Beijing 100000, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplace equations; Image resolution; Estimation; Image reconstruction; Fuses; Refining; Layout; Depth refinement; Laplacian pyramid fusion; multi-scale residual;
D O I
10.1109/LSP.2023.3251921
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning approach has achieved great success in monocular depth estimation. However, the learned deep network may produce a depth map with fewer details and incorrect global depth layout, especially when the learned network is applied to a high-resolution image. In order to generate a high-quality depth map with better global structure and richer details, we propose a multi-scale residual Laplacian pyramid fusion net (MS-RLap-FNet), to fuse the multi-scale depth maps estimated by the existing depth estimation models, for depth refinement. Our approach relies on a proposed multi-scale residual Laplacian pyramid decomposition of the multi-scale depth maps, and the fusion network modules to gradually refine the depth maps based on the decomposition from low to high resolution. Comprehensive experiments show that our method, by refining the depth maps based on three popular monocular depth estimation models (DPT, MiDas, SGR), outperforms the existing state-of-the-art methods both in quantity and quality on three public datasets with different image resolutions. The depth map refined by our method has better global depth layout with richer fine details.
引用
收藏
页码:205 / 209
页数:5
相关论文
共 25 条
  • [1] The Fast Bilateral Solver
    Barron, Jonathan T.
    Poole, Ben
    [J]. COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 617 - 632
  • [2] A Naturalistic Open Source Movie for Optical Flow Evaluation
    Butler, Daniel J.
    Wulff, Jonas
    Stanley, Garrett B.
    Black, Michael J.
    [J]. COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 611 - 625
  • [3] Deep monocular depth estimation leveraging a large-scale outdoor stereo dataset
    Cho, Jaehoon
    Min, Dongbo
    Kim, Youngjung
    Sohn, Kwanghoon
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 178
  • [4] RAFM: Recurrent Atrous Feature Modulation for Accurate Monocular Depth Estimating
    Fan, Xinnan
    Zhou, Zhongkai
    Shi, Pengfei
    Xin, Yuanxue
    Zhou, Xuan
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1609 - 1613
  • [5] Guided Image Filtering
    He, Kaiming
    Sun, Jian
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (06) : 1397 - 1409
  • [6] Hua Y., 2020, PROC CVPR WORKSHOP C
  • [7] Laplacian pyramid networks: A new approach for multispectral pansharpening
    Jin, Cheng
    Deng, Liang-Jian
    Huang, Ting-Zhu
    Vivone, Gemine
    [J]. INFORMATION FUSION, 2022, 78 : 158 - 170
  • [8] Layered Depth Refinement with Mask Guidance
    Kim, Soo Ye
    Zhang, Jianming
    Niklaus, Simon
    Fan, Yifei
    Chen, Simon
    Lin, Zhe
    Kim, Munchurl
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 3845 - 3855
  • [9] Evaluation of CNN-Based Single-Image Depth Estimation Methods
    Koch, Tobias
    Liebel, Lukas
    Fraundorfer, Friedrich
    Koerner, Marco
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT III, 2019, 11131 : 331 - 348
  • [10] Adv-Depth: Self-Supervised Monocular Depth Estimation With an Adversarial Loss
    Li, Kunhong
    Fu, Zhiheng
    Wang, Hanyun
    Chen, Zonghao
    Guo, Yulan
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 638 - 642