On the fractional integral inclusions having exponential kernels for interval-valued convex functions

被引:43
作者
Zhou, Taichun [1 ]
Yuan, Zhengrong [1 ]
Du, Tingsong [1 ,2 ]
机构
[1] China Three Gorges Univ, Dept Math, Coll Sci, Yichang, Peoples R China
[2] China Three Gorges Univ, Three Gorges Math Res Ctr, Yichang, Peoples R China
关键词
Fractional integrals; Interval-valued functions; Hermite-Hadamard's inequality; HADAMARD TYPE INEQUALITIES; HERMITE-HADAMARD; OPTIMIZATION; FEJER;
D O I
10.1007/s40096-021-00445-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the present paper is to establish certain fractional integral inclusions having exponential kernels, which are related to the Hermite-Hadamard, Hermite-Hadamard-Fejer, and Pachpatte type inequalities. These results allow us to obtain a new class of inclusions which can be viewed as some substantial generalizations of the previously reported results. Also, the graphical representations for the results are utilized to identify the correctness of the investigated inclusion relations that occur with the change of the parameter alpha.
引用
收藏
页码:107 / 120
页数:14
相关论文
共 31 条
  • [1] Abramovich S, 2017, MATH NOTES+, V102, P599, DOI [10.1134/S0001434617110013, 10.4213/mzm11776]
  • [2] Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals
    Ahmad, Bashir
    Alsaedi, Ahmed
    Kirane, Mokhtar
    Torebek, Berikbol T.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 353 : 120 - 129
  • [3] Breckner W. W., 1993, REV DANAL NUM R TH O, V22, P39
  • [4] FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Budak, Huseyin
    Tunc, Tuba
    Sarikaya, Mehmet Zeki
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 705 - 718
  • [5] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals
    Chen, Hua
    Katugampola, Udita N.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1274 - 1291
  • [6] Neural Network Output Optimization Using Interval Analysis
    de Weerdt, E.
    Chu, Q. P.
    Mulder, J. A.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (04): : 638 - 653
  • [7] A MAPPING ASSOCIATED TO h-CONVEX VERSION OF THE HERMITE-HADAMARD INEQUALITY WITH APPLICATIONS
    Delavar, M. Rostamian
    De La Sen, M.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (02): : 329 - 335
  • [8] CERTAIN QUANTUM ESTIMATES ON THE PARAMETERIZED INTEGRAL INEQUALITIES AND THEIR APPLICATIONS
    Du, Tingsong
    Luo, Chunyan
    Yu, Bo
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (01): : 201 - 228
  • [9] CERTAIN INTEGRAL INEQUALITIES CONSIDERING GENERALIZED m-CONVEXITY ON FRACTAL SETS AND THEIR APPLICATIONS
    Du, Tingsong
    Wang, Hao
    Khan, Muhammad Adil
    Zhang, Yao
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (07)
  • [10] Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity
    Du, Tingsong
    Awan, Muhammad Uzair
    Kashuri, Artion
    Zhao, Shasha
    [J]. APPLICABLE ANALYSIS, 2021, 100 (03) : 642 - 662