Variational Bayesian Inference for DOA Estimation Under Impulsive Noise and Nonuniform Noise

被引:11
作者
Guo, Kun [1 ]
Zhang, Liang [1 ,2 ]
Li, Yingsong [3 ]
Zhou, Tian [1 ]
Yin, Jingwei [1 ]
机构
[1] Harbin Engn Univ, Minist Educ,Coll Underwater Acoust Engn, Key Lab Polar Acoust & Applicat,Key Lab Marine In, Natl Key Lab Underwater Acoust Technol,Minist Ind, Harbin 150001, Peoples R China
[2] Chinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 10090, Peoples R China
[3] Anhui Univ, Sch Elect & Informat Engn, Hefei 230039, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Direction-of-arrival estimation; Estimation; Sparse matrices; Bayes methods; Gaussian noise; Underwater acoustics; Acoustics; DOA estimation; impulsive noise; robust sparse recovery; variational Bayesian inference (VBI); SOURCE ENUMERATION;
D O I
10.1109/TAES.2023.3265949
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Existing direction-of-arrival (DOA) estimation approaches are often only considering Gaussian noise or impulsive noise, leading to the performance degradation in the scenario that both noises exist simultaneously. Considering that ambient noise of an underwater acoustic array may have different variances due to the large aperture, this article proposes a robust sparse recovery method based on variational Bayesian inference (VBI) that considers the "heavy tailed" characteristics of impulsive noise, and the nonuniformity of ambient noise. Student-t distribution and Bernoulli distribution are modeled as impulsive noise in the measurement, and then, the array observed signal is created as a mixture of desired signal, impulsive noise and nonuniform noise. A VBI scheme is constructed to estimate the desired sparse signal to implement DOAs. Results obtained from the numerical simulation and experimental data processing verify the superior performance of the proposed VBI promoting DOA estimation for dealing with impulsive noise and nonuniform noise.
引用
收藏
页码:5778 / 5790
页数:13
相关论文
共 36 条
[1]   Sparse Bayesian Learning Approach for Outlier-Resistant Direction-of-Arrival Estimation [J].
Dai, Jisheng ;
So, Hing Cheung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (03) :744-756
[2]   Root Sparse Bayesian Learning for Off-Grid DOA Estimation [J].
Dai, Jisheng ;
Bao, Xu ;
Xu, Weichao ;
Chang, Chunqi .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) :46-50
[3]   Generalized l2 - lp minimization based DOA estimation for sources with known waveforms in impulsive noise [J].
Dong, Yang-Yang ;
Dong, Chun-Xi ;
Liu, Wei ;
Cai, Jingjing .
SIGNAL PROCESSING, 2022, 190
[4]   PARAMETER ESTIMATES FOR SYMMETRIC STABLE DISTRIBUTIONS [J].
FAMA, EF ;
ROLL, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1971, 66 (334) :331-338
[5]   Multisnapshot Sparse Bayesian Learning for DOA [J].
Gerstoft, Peter ;
Mecklenbrauker, Christoph F. ;
Xenaki, Angeliki ;
Nannuru, Santosh .
IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (10) :1469-1473
[6]   Efficient DOA estimation based on variable least Lncosh algorithm under impulsive noise interferences [J].
Guo, Kun ;
Guo, Longxiang ;
Li, Yingsong ;
Zhang, Liang ;
Dai, Zehua ;
Yin, Jingwei .
DIGITAL SIGNAL PROCESSING, 2022, 122
[7]   Robust DOA estimation for burst impulsive noise [J].
Guo, Mengya ;
Sun, Yueping ;
Dai, Jisheng ;
Chang, Chunqi .
DIGITAL SIGNAL PROCESSING, 2021, 114
[8]   Source Enumeration Via MDL Criterion Based on Linear Shrinkage Estimation of Noise Subspace Covariance Matrix [J].
Huang, Lei ;
So, H. C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (19) :4806-4821
[9]   Source Enumeration for High-Resolution Array Processing Using Improved Gerschgorin Radii Without Eigendecomposition [J].
Huang, Lei ;
Long, Teng ;
Wu, Shunjun .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (12) :5916-5925
[10]   Bayesian compressive sensing [J].
Ji, Shihao ;
Xue, Ya ;
Carin, Lawrence .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (06) :2346-2356