A new B-spline type approximation method for non-smooth functions

被引:5
作者
Amat, Sergio [1 ]
Levin, David [2 ]
Ruiz-Alvarez, Juan [1 ]
Yanez, Dionisio F. [3 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
[3] Univ Valencia, Dept Matemat, Valencia, Spain
关键词
B-splines; Non linear means; Approximation; Adaption to discontinuities; Discontinuous data;
D O I
10.1016/j.aml.2023.108628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter we present a non-linear modification of classical quadratic and cubic splines following the inspiration of the PPH (piecewise polynomial harmonic) interpolation method. The objective is to get rid of the oscillations that appear close to jump discontinuities in the function when we approximate using a classical spline.(c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:8
相关论文
共 11 条
  • [1] On the stability of the PPH nonlinear multiresolution
    Amat, S
    Liandrat, J
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 18 (02) : 198 - 206
  • [2] A class of C2 quasi-interpolating splines free of Gibbs phenomenon
    Amat, Sergio
    Levin, David
    Ruiz-Alvarez, Juan
    Trillo, Juan C.
    Yanez, Dionisio F.
    [J]. NUMERICAL ALGORITHMS, 2022, 91 (01) : 51 - 79
  • [3] Analysis of a new nonlinear subdivision scheme. Applications in image processing
    Amat, Sergio
    Donat, Rosa
    Liandrat, Jacques
    Trillo, J. Carlos
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (02) : 193 - 225
  • [4] On a class of splines free of Gibbs phenomenon
    Amat, Sergio
    Ruiz, Juan
    Shu, Chi-Wang
    Trillo, Juan Carlos
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 : S29 - S64
  • [5] De Boor C., 1978, PRACTICAL GUIDE SPLI, V27
  • [6] On the Gibbs phenomenon and its resolution
    Gottlieb, D
    Shu, CW
    [J]. SIAM REVIEW, 1997, 39 (04) : 644 - 668
  • [7] A class of nonlinear four-point subdivision schemes
    Guessab, Allal
    Moncayo, Maria
    Schmeisser, Gerhard
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 37 (02) : 151 - 190
  • [8] Lanczos C., 1966, Discourse on Fourier Series
  • [9] Lyche T., 2018, LECT NOTES MATH, V2219
  • [10] Power ENO methods: a fifth-order accurate Weighted Power ENO method
    Serna, S
    Marquina, A
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (02) : 632 - 658