Water-based organic solar cells from Janus nanoparticles: Closing the performance gap with reference cells

被引:1
作者
Holmes, Alexandre [1 ]
Laval, Hugo [2 ]
Deniau, Elise [1 ,4 ]
Schmutz, Marc [5 ]
Blanc, Sylvie [1 ]
Wantz, Guillaume [2 ]
Chambon, Sylvain [2 ,3 ]
Lartigau-Dagron, Christine [1 ]
Bousquet, Antoine [1 ]
机构
[1] Univ Pau & Pays Adour, CNRS, IPREM, E2S UPPA, Pau, France
[2] Univ Bordeaux, CNRS, Bordeaux INP, IMS UMR 5218, F-33400 Talence, France
[3] Univ Tokyo, Inst Ind Sci, LIMMS, CNRS,IIS IRL2820, 4-6-1 Komaba,Meguro Ku, Tokyo 1538505, Japan
[4] Le Mans Univ, Inst Mol & Mat Mans, UMR CNRS 6283, F-72085 Le Mans 9, France
[5] Univ Strasbourg, Inst Charles Sadron, CNRS, UPR22, Rue Loess Strasbourg, Strasbourg, France
关键词
Photovoltaics; pi-conjugated materials; Janus nanoparticles; Surfactant; OPEN-CIRCUIT VOLTAGE; PHASE-SEPARATION; POLYMER; FULLERENE; P3HT/PCBM; MORPHOLOGY;
D O I
10.1016/j.solmat.2023.112656
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
P3HT:PC61BM Janus nanoparticles prepared through nanoprecipitation were integrated in inverted solar cells with three different surfactants: an anionic (SDS), a cationic (C16TAB) and a neutral (pluronic F127). An investigation of the properties at the dispersed state showed no difference between all the surfactants. A thermogravimetric titration method was developed to calculate the residual amount of surfactant in the dispersions. The higher residual content of surfactant in the dispersions resulted in lower electronical properties. The optimum balance was found with SDS, showing the lower surfactant quantity required to achieve nanoparticle stabilisation (10%W), resulting in the minimum amount of insulating molecule in the active layer (PCE = 1.7 %). A systematic comparison is made, between a reference system, solar cells made from a o-dichlorobenzene solution of the active materials (power conversion efficiency (PCE) = 3.2 %). Atomic force microscopy revealed that best performances were linked to the complete sintering of the nanoparticles and an optimisation of the film morphology. While PC61BM aggregation was identified for SDS-based solar cells, a less pronounced aggregation was observed for pluronic F127. To solve this issue, we demonstrated that a slight addition of Pluronic F127 (4%(w)) in SDS-stabilised dispersion prior to processing the active layer not only ensured a better film formation, but avoided the PC61BM aggregation. As a result, a significant improvement of efficiencies was achieved (PCE = 2.44 %) approaching the reference solar cell efficiency.
引用
收藏
页数:9
相关论文
共 52 条
[1]   The origin of performance limitations in miniemulsion nanoparticulate organic photovoltaic devices [J].
Al-Mudhaffer, Mohammed F. ;
Griffith, Matthew J. ;
Feron, Krishna ;
Nicolaidis, Nicolas C. ;
Cooling, Nathan A. ;
Zhou, Xiaojing ;
Holdsworth, John ;
Belcher, Warwick J. ;
Dastoor, Paul C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 175 :77-88
[2]   Fabrication conditions for efficient organic photovoltaic cells from aqueous dispersions of nanoparticles [J].
Bag, Monojit ;
Gehan, Timothy S. ;
Renna, Lawrence A. ;
Algaier, Dana D. ;
Lahti, Paul M. ;
Venkataraman, D. .
RSC ADVANCES, 2014, 4 (85) :45325-45331
[3]   Effect of Donor-Acceptor Vertical Composition Profile on Performance of Organic Bulk Heterojunction Solar Cells [J].
Bi, Sheng ;
Ouyang, Zhongliang ;
Shaik, Shoieb ;
Li, Dawen .
SCIENTIFIC REPORTS, 2018, 8
[4]   High performance as-cast P3HT:PCBM devices: understanding the role of molecular weight in high regioregularity P3HT [J].
Chandrasekaran, Naresh ;
Kumar, Anil ;
Thomsen, Lars ;
Kabra, Dinesh ;
McNeill, Christopher R. .
MATERIALS ADVANCES, 2021, 2 (06) :2045-2054
[5]   Universal selection rule for surfactants used in miniemulsion processes for eco-friendly and high performance polymer semiconductors [J].
Cho, Jangwhan ;
Yoon, Seongwon ;
Sim, Kyu Min ;
Jeong, Yong Jin ;
Park, Chan Eon ;
Kwon, Soon-Ki ;
Kim, Yun-Hi ;
Chung, Dae Sung .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (11) :2324-2333
[6]   Surfactant Engineering and Its Role in Determining the Performance of Nanoparticulate Organic Photovoltaic Devices [J].
Chowdhury, Riku ;
Holmes, Natalie P. ;
Cooling, Nathan ;
Belcher, Warwick J. ;
Dastoor, Paul C. ;
Zhou, Xiaojing .
ACS OMEGA, 2022, 7 (11) :9212-9220
[7]   Aqueous Nanoparticle Polymer Solar Cells: Effects of Surfactant Concentration and Processing on Device Performance [J].
Colberts, Fallon J. M. ;
Wienk, Martijn M. ;
Janssen, Rene A. J. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) :13380-13389
[8]   The effect of mesomorphology upon the performance of nanoparticulate organic photovoltaic devices [J].
Dam, Henrik F. ;
Holmes, Natalie P. ;
Andersen, Thomas R. ;
Larsen-Olsen, Thue T. ;
Barr, Matthew ;
Kilcoyne, A. L. David ;
Zhou, Xiaojing ;
Dastoor, Paul C. ;
Krebs, Frederik C. ;
Belcher, Warwick J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 138 :102-108
[9]  
Darwis D., 2011, Surfactant Free P3HT / PCBM Nanoparticles for Organic Photovoltaics (OPV), P120, DOI [10.1063/1.3667236.Indonesia, DOI 10.1063/1.3667236.INDONESIA]
[10]   Surfactant-free nanoparticulate organic photovoltaics [J].
Darwis, Darmawati ;
Holmes, Natalie ;
Elkington, Daniel ;
Kilcoyne, A. L. David ;
Bryant, Glenn ;
Zhou, Xiaojing ;
Dastoor, Paul ;
Belcher, Warwick .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 121 :99-107