Global maximal regularity for equations with degenerate weights 

被引:8
作者
Balci, Anna Kh. [1 ]
Byun, Sun-Sig [2 ]
Diening, Lars [1 ]
Lee, Ho-Sik [1 ]
机构
[1] Univ Bielefeld, Fak Math, Univ Str 25, D-33615 Bielefeld, Germany
[2] Seoul Natl Univ, Inst Math, Dept Math Sci & Res, Gwanak Ro 1, Seoul, South Korea
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2023年 / 177卷
基金
新加坡国家研究基金会;
关键词
Degenerate weight; Lipschitz boundary; p-Laplacian; Regularity of solutions; OBLIQUE DERIVATIVE PROBLEMS; NONLINEAR ELLIPTIC-EQUATIONS; BOUNDARY-VALUE-PROBLEMS; BMO COEFFICIENTS; LIPSCHITZ-DOMAINS; WEAK SOLUTIONS; GRADIENT; SYSTEMS; INTEGRABILITY; PDES;
D O I
10.1016/j.matpur.2023.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are concerned with global maximal regularity estimates for elliptic equations with degenerate weights. We consider both the linear case and the non-linear case. We show that higher integrability of the gradients can be obtained by imposing a local small oscillation condition on the weight and a local small Lipschitz condition on the boundary of the domain. Our results are new in the linear and non-linear case. We show by example that the relation between the exponent of higher integrability and the smallness parameters is sharp even in the linear or the unweighted case. & COPY; 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:484 / 530
页数:47
相关论文
共 63 条
[1]  
[Anonymous], 2001, Differential Integral Equations
[2]  
[Anonymous], 1963, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[3]   Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems [J].
Athanasopoulos, I ;
Caffarelli, L ;
Salsa, S .
ANNALS OF MATHEMATICS, 1996, 143 (03) :413-434
[4]  
Auscher P, 2002, B UNIONE MAT ITAL, V5B, P487
[5]   Fractional Differentiability for Solutions of Nonlinear Elliptic Equations [J].
Baison, A. L. ;
Clop, A. ;
Giova, R. ;
Orobitg, J. ;
di Napoli, A. Passarelli .
POTENTIAL ANALYSIS, 2017, 46 (03) :403-430
[6]   ELLIPTIC EQUATIONS WITH DEGENERATE WEIGHTS [J].
Balci, Anna K. H. ;
Diening, Lars ;
Giova, Raffaella ;
di Napoli, Antonia Passarelli .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) :2373-2412
[7]   A pointwise differential inequality and second-order regularity for nonlinear elliptic systems [J].
Balci, Anna Kh. ;
Cianchi, Andrea ;
Diening, Lars ;
Maz'ya, Vladimir .
MATHEMATISCHE ANNALEN, 2022, 383 (3-4) :1775-1824
[8]   Higher order Calderon-Zygmund estimates for the p-Laplace equation [J].
Balci, Anna Kh ;
Diening, Lars ;
Weimar, Markus .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (02) :590-635
[9]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[10]  
Breit D, 2022, ARCH RATION MECH AN, V243, P201, DOI 10.1007/s00205-021-01712-w