Global maximal regularity for equations with degenerate weights 

被引:5
作者
Balci, Anna Kh. [1 ]
Byun, Sun-Sig [2 ]
Diening, Lars [1 ]
Lee, Ho-Sik [1 ]
机构
[1] Univ Bielefeld, Fak Math, Univ Str 25, D-33615 Bielefeld, Germany
[2] Seoul Natl Univ, Inst Math, Dept Math Sci & Res, Gwanak Ro 1, Seoul, South Korea
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2023年 / 177卷
基金
新加坡国家研究基金会;
关键词
Degenerate weight; Lipschitz boundary; p-Laplacian; Regularity of solutions; OBLIQUE DERIVATIVE PROBLEMS; NONLINEAR ELLIPTIC-EQUATIONS; BOUNDARY-VALUE-PROBLEMS; BMO COEFFICIENTS; LIPSCHITZ-DOMAINS; WEAK SOLUTIONS; GRADIENT; SYSTEMS; INTEGRABILITY; PDES;
D O I
10.1016/j.matpur.2023.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are concerned with global maximal regularity estimates for elliptic equations with degenerate weights. We consider both the linear case and the non-linear case. We show that higher integrability of the gradients can be obtained by imposing a local small oscillation condition on the weight and a local small Lipschitz condition on the boundary of the domain. Our results are new in the linear and non-linear case. We show by example that the relation between the exponent of higher integrability and the smallness parameters is sharp even in the linear or the unweighted case. & COPY; 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:484 / 530
页数:47
相关论文
共 63 条
  • [1] Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems
    Athanasopoulos, I
    Caffarelli, L
    Salsa, S
    [J]. ANNALS OF MATHEMATICS, 1996, 143 (03) : 413 - 434
  • [2] Auscher P, 2002, B UNIONE MAT ITAL, V5B, P487
  • [3] Fractional Differentiability for Solutions of Nonlinear Elliptic Equations
    Baison, A. L.
    Clop, A.
    Giova, R.
    Orobitg, J.
    di Napoli, A. Passarelli
    [J]. POTENTIAL ANALYSIS, 2017, 46 (03) : 403 - 430
  • [4] ELLIPTIC EQUATIONS WITH DEGENERATE WEIGHTS
    Balci, Anna K. H.
    Diening, Lars
    Giova, Raffaella
    di Napoli, Antonia Passarelli
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) : 2373 - 2412
  • [5] A pointwise differential inequality and second-order regularity for nonlinear elliptic systems
    Balci, Anna Kh.
    Cianchi, Andrea
    Diening, Lars
    Maz'ya, Vladimir
    [J]. MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1775 - 1824
  • [6] Higher order Calderon-Zygmund estimates for the p-Laplace equation
    Balci, Anna Kh
    Diening, Lars
    Weimar, Markus
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (02) : 590 - 635
  • [7] Bhatia R, 2007, PRINC SER APPL MATH, P1
  • [8] Breit D, 2022, ARCH RATION MECH AN, V243, P201, DOI 10.1007/s00205-021-01712-w
  • [9] Pointwise Calderon-Zygmund gradient estimates for the p-Laplace system
    Breit, Dominic
    Cianchi, Andrea
    Diening, Lars
    Kuusi, Tuomo
    Schwarzacher, Sebastian
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 114 : 146 - 190
  • [10] Elliptic equations with BMO coefficients in Lipschitz domains
    Byun, SS
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (03) : 1025 - 1046