A POSITIVITY-PRESERVING FINITE ELEMENT METHOD FOR QUANTUM DRIFT-DIFFUSION MODEL

被引:1
作者
Mu, Pengcong [1 ,2 ]
Zheng, Weiying [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Computat Math & Sci Comp, Acad Math & Syst Sci, LSEC NCMIS, Beijing 100190, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2023年 / 41卷 / 05期
关键词
Quantum drift-diffusion model; Positivity-preserving finite element method; Newton method; FinFET device; High bias voltage; SCHEME; EQUATION;
D O I
10.4208/jcm.2206-m2021-0353
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a positivity-preserving finite element method for solving the three-dimensional quantum drift-diffusion model. The model consists of five nonlinear elliptic equations, and two of them describe quantum corrections for quasi-Fermi levels. We propose an interpolated-exponential finite element (IEFE) method for solving the two quantum-correction equations. The IEFE method always yields positive carrier densities and preserves the positivity of second-order differential operators in the Newton lineariza-tion of quantum-correction equations. Moreover, we solve the two continuity equations with the edge-averaged finite element (EAFE) method to reduce numerical oscillations of quasi-Fermi levels. The Poisson equation of electrical potential is solved with standard Lagrangian finite elements. We prove the existence of solution to the nonlinear discrete problem by using a fixed-point iteration and solving the minimum problem of a new dis-crete functional. A Newton method is proposed to solve the nonlinear discrete problem. Numerical experiments for a three-dimensional nano-scale FinFET device show that the Newton method is robust for source-to-gate bias voltages up to 9V and source-to-drain bias voltages up to 10V.
引用
收藏
页码:910 / 933
页数:24
相关论文
共 21 条
[1]   MACROSCOPIC PHYSICS OF THE SILICON INVERSION LAYER [J].
ANCONA, MG ;
TIERSTEN, HF .
PHYSICAL REVIEW B, 1987, 35 (15) :7959-7965
[2]   QUANTUM CORRECTION TO THE EQUATION OF STATE OF AN ELECTRON-GAS IN A SEMICONDUCTOR [J].
ANCONA, MG ;
IAFRATE, GJ .
PHYSICAL REVIEW B, 1989, 39 (13) :9536-9540
[3]   DIFFUSION-DRIFT MODELING OF STRONG INVERSION-LAYERS [J].
ANCONA, MG .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1987, 6 (01) :11-18
[4]   Three-dimensional exponentially fitted conforming tetrahedral finite elements for the semiconductor continuity equations [J].
Angermann, L ;
Wang, S .
APPLIED NUMERICAL MATHEMATICS, 2003, 46 (01) :19-43
[5]   On the stationary quantum drift-diffusion model [J].
Ben Abdallah, N ;
Unterreiter, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02) :251-275
[6]   NEWTON SOLVERS FOR DRIFT-DIFFUSION AND ELECTROKINETIC EQUATIONS [J].
Bousquet, Arthur ;
Hu, Xiaozhe ;
Metti, Maximilian S. ;
Xu, Jinchao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03) :B982-B1006
[7]  
Carrillo JA, 2003, DISCRETE CONT DYN-B, V3, P1
[8]   Quantum-corrected drift-diffusion models for transport in semiconductor devices [J].
de Falco, C ;
Gatti, E ;
Lacaita, AL ;
Sacco, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (02) :533-561
[9]   Quantum-corrected drift-diffusion models: Solution fixed point map and finite element approximation [J].
de Falco, Carlo ;
Jerome, Joseph W. ;
Sacco, Riccardo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (05) :1770-1789
[10]  
Jüngel A, 2001, SIAM J NUMER ANAL, V39, P385, DOI 10.1137/S0036142900369362