Recalibrating Features and Regression for Oriented Object Detection

被引:9
作者
Chen, Weining [1 ,2 ,3 ]
Miao, Shicheng [1 ,2 ]
Wang, Guangxing [1 ,2 ]
Cheng, Gong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710129, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
[3] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
关键词
oriented object detection; feature enhancement; feature decoupling; bounding box regression;
D O I
10.3390/rs15082134
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The objects in remote sensing images are normally densely packed, arbitrarily oriented, and surrounded by complex backgrounds. Great efforts have been devoted to developing oriented object detection models to accommodate such data characteristics. We argue that an effective detection model hinges on three aspects: feature enhancement, feature decoupling for classification and localization, and an appropriate bounding box regression scheme. In this article, we instantiate the three aspects on top of the classical Faster R-CNN, with three novel components proposed. First, we propose a weighted fusion and refinement (WFR) module, which adaptively weighs multi-level features and leverages the attention mechanism to refine the fused features. Second, we decouple the RoI (region of interest) features for the subsequent classification and localization via a lightweight affine transformation-based feature decoupling (ATFD) module. Third, we propose a post-classification regression (PCR) module for generating the desired quadrilateral bounding boxes. Specifically, PCR predicts the precise vertex location on each side of a predicted horizontal box, by simply learning the following: (i) classify the discretized regression range of the vertex, and (ii) revise the vertex location with an offset. We conduct extensive experiments on the DOTA, DIOR-R, and HRSC2016 datasets to evaluate our method.
引用
收藏
页数:16
相关论文
共 43 条
[1]   Class attention network for image recognition [J].
Cheng, Gong ;
Lai, Pujian ;
Gao, Decheng ;
Han, Junwei .
SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (03)
[2]   Holistic Prototype Activation for Few-Shot Segmentation [J].
Cheng, Gong ;
Lang, Chunbo ;
Han, Junwei .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) :4650-4666
[3]   Anchor-Free Oriented Proposal Generator for Object Detection [J].
Cheng, Gong ;
Wang, Jiabao ;
Li, Ke ;
Xie, Xingxing ;
Lang, Chunbo ;
Yao, Yanqing ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[4]   ISNet: Towards Improving Separability for Remote Sensing Image Change Detection [J].
Cheng, Gong ;
Wang, Guangxing ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[5]   Dual-Aligned Oriented Detector [J].
Cheng, Gong ;
Yao, Yanqing ;
Li, Shengyang ;
Li, Ke ;
Xie, Xingxing ;
Wang, Jiabao ;
Yao, Xiwen ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[6]   Learning RoI Transformer for Oriented Object Detection in Aerial Images [J].
Ding, Jian ;
Xue, Nan ;
Long, Yang ;
Xia, Gui-Song ;
Lu, Qikai .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2844-2853
[7]   NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection [J].
Ghiasi, Golnaz ;
Lin, Tsung-Yi ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7029-7038
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline [J].
Heidler, Konrad ;
Mou, Lichao ;
Baumhoer, Celia ;
Dietz, Andreas ;
Zhu, Xiao Xiang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[10]  
Jaderberg M, 2015, ADV NEUR IN, V28