Nonintrusive parameter adaptation of chemical process models with reinforcement learning

被引:6
作者
Alhazmi, Khalid [1 ]
Sarathy, S. Mani [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Clean Combust Res Ctr CCRC, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi Arabia
关键词
Nonlinear system identification; Parameter estimation; Reinforcement learning; CLOSED-LOOP IDENTIFICATION; PACKED-BED REACTOR; OPTIMIZATION; BEHAVIOR; HYDROGENATION; ETHENE; ETHYNE; VIEW;
D O I
10.1016/j.jprocont.2023.02.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model-based control is one of the most prevalent techniques for designing and controlling engineering systems. However, many of these systems are complex and characterized by changing dynamics. Hence, online system identification is required to achieve optimum adaptive control performance for such complex systems. This work proposes an algorithm for nonintrusive, online, nonlinear parameter estimation of physical models using deep reinforcement learning (RL). The problem of training a neural network for parameter estimation is formulated as a reinforcement learning problem. The RL-based parameter estimation policy is tested on a simulation of the selective hydrogenation of acetylene, which is a highly nonlinear system. The learned model estimation policy is able to correctly predict the states of the system with a prediction error of less than 1% in various conditions, such as in the presence of measurement noise and structural differences in models.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:87 / 95
页数:9
相关论文
共 31 条
[11]  
Camacho E.F., 2013, Model predictive, control, DOI [DOI 10.1007/978-0-85729-398-5, 10.1007/978-0-85729-398-5]
[12]   MPC: Current practice and challenges [J].
Darby, Mark L. ;
Nikolaou, Michael .
CONTROL ENGINEERING PRACTICE, 2012, 20 (04) :328-342
[13]   Nonlinear filtering: Interacting particle resolution [J].
DelMoral, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (06) :653-658
[14]   Krill herd: A new bio-inspired optimization algorithm [J].
Gandomi, Amir Hossein ;
Alavi, Amir Hossein .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (12) :4831-4845
[15]   On actor-critic algorithms [J].
Konda, VR ;
Tsitsiklis, JN .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1143-1166
[16]   Systems & Control for the future of humanity, research agenda: Current and future roles, impact and grand challenges [J].
Lamnabhi-Lagarrigue, Francoise ;
Annaswamy, Anuradha ;
Engell, Sebastian ;
Isaksson, Alf ;
Khargonekar, Pramod ;
Murray, Richard M. ;
Nijmeijer, Henk ;
Samad, Tariq ;
Tilbury, Dawn ;
Van den Hof, Paul .
ANNUAL REVIEWS IN CONTROL, 2017, 43 :1-64
[17]  
Li YX, 2018, Arxiv, DOI [arXiv:1701.07274, DOI 10.48550/ARXIV.1701.07274]
[18]   ASYMPTOTIC-BEHAVIOR OF THE EXTENDED KALMAN FILTER AS A PARAMETER ESTIMATOR FOR LINEAR-SYSTEMS [J].
LJUNG, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (01) :36-50
[19]  
Ljung L., 1983, THEORY PRACTICE RECU
[20]   A practical global multi-stage method for fully automated closed-loop identification of industrial processes [J].
MacArthur, J. Ward ;
Zhan, Charles .
JOURNAL OF PROCESS CONTROL, 2007, 17 (10) :770-786