A High-Resolution Velocity Inversion Method Based on Attention Convolutional Neural Network

被引:2
作者
Li, Wenda [1 ,2 ,3 ]
Liu, Hong [1 ,2 ,3 ]
Wu, Tianqi [4 ]
Huo, Shoudong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China
[4] China Univ Geosci, Sch Geophys & Informat Technol, Beijing 100083, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Attention; deep learning (DL); full-waveform inversion (FWI); WAVE-FORM INVERSION; FREQUENCY-DOMAIN; COMPONENTS;
D O I
10.1109/TGRS.2023.3311788
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Velocity model building is an indispensable part of seismic exploration, which can directly affect the accuracy of subsequent data processing. Traditional full-waveform inversion (FWI) is usually challenging to update the deep background velocity information. Moreover, deep learning (DL)-based velocity modeling efforts can face the problem of lacking generalization ability. Based on this, we propose an attention convolutional-neural-network-based velocity inversion (ACNN-VI) algorithm to update the deep layer background velocity and the reflection interface iteratively. First, we proposed a constantly iterative structure, which allows the initial model to keep iteratively close to the true model. Second, we proposed a convolutional neural network (CNN) based on an attention mechanism that can recover faults and layers efficiently. Furthermore, we propose a smooth strategy that enables the method in this article to be adapted to the case of an inferior initial model. Finally, our numerical tests prove that our method has good inversion results for different models.
引用
收藏
页数:14
相关论文
共 44 条
[1]  
Alali A., 2022, arXiv
[2]   Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network [J].
Dong, Xue ;
Lei, Yang ;
Tian, Sibo ;
Wang, Tonghe ;
Patel, Pretesh ;
Curran, Walter J. ;
Jani, Ashesh B. ;
Liu, Tian ;
Yang, Xiaofeng .
RADIOTHERAPY AND ONCOLOGY, 2019, 141 :192-199
[3]  
Fomel S., 2013, Journal of Open Research Software, V1, DOI DOI 10.5334/JORS.AG
[4]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[5]  
Gao K, 2022, GEOPHYSICS, V87, pN13, DOI [10.1190/geo2020-0945.1, 10.1190/GEO2020-0945.1]
[6]  
He QL, 2021, GEOPHYSICS, V86, pV1, DOI [10.1190/geo2019-0382.1, 10.1190/GEO2019-0382.1]
[7]   WAVE-FIELD TRANSFORMATIONS OF VERTICAL SEISMIC PROFILES [J].
HU, LZ ;
MCMECHAN, GA .
GEOPHYSICS, 1987, 52 (03) :307-321
[8]  
Kazei V, 2021, GEOPHYSICS, V86, pR711, DOI [10.1190/GEO2019-0473.1, 10.1190/geo2019-0473.1]
[9]  
K��hn D, 2011, Ph.D. thesis
[10]  
Lailly P., 1983, C INV SCATT THEOR AP, V11, P206