Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds

被引:1
|
作者
Khatri, Mohan [1 ]
Singh, Jay Prakash [1 ]
机构
[1] Mizoram Univ, Dept Math & Comp Sci, Aizawl 796004, Mizoram, India
关键词
Almost Ricci-Yamabe soliton; Kenmotsu manifold; almost Kenmotsu manifold; Ricci soliton; Yamabe soliton; GRADIENT RICCI;
D O I
10.1142/S179355712350136X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper examines almost Kenmotsu manifolds (briefly, AKMs) endowed with the almost Ricci-Yamabe solitons (ARYSs) and gradient ARYSs. The condition for an AKM with ARYS to be eta-Einstein is established. We also show that an ARYS on Kenmotsu manifold becomes a Ricci-Yamabe soliton under certain restrictions. In this series, it is proven that a (2n+1)-dimensional (K, mu)'-AKM equipped with a gradient ARYS is either locally isometric to Hn+1(-4) x R-n or the Reeb vector field and the soliton vector field are codirectional. The properties of three-dimensional non-Kenmotsu AKMs endowed with a gradient ARYS are studied.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Almost Ricci-Yamabe Solitons in f-Kenmotsu Manifolds
    Shivaprasanna, G. S.
    Rajendra, R.
    Reddy, P. Siva Kota
    Somashekhara, G.
    Pavithra, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [2] On Almost Kenmotsu Manifolds admitting Conformal Ricci-Yamabe Solitons
    Singh, Jay Prakash
    Zosangzuala, Chhakchhuak
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43 : 23 - 23
  • [3] Characterization of Almost η-Ricci-Yamabe Soliton and Gradient Almost η-Ricci-Yamabe Soliton on Almost Kenmotsu Manifolds
    Mondal, Somnath
    Dey, Santu
    Bhattacharyya, Arindam
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (04) : 728 - 748
  • [4] Ricci-Yamabe solitons on (κ, μ)-almost coKahler manifolds
    Mandal, Tarak
    AFRIKA MATEMATIKA, 2022, 33 (02)
  • [5] Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds
    Sardar, Arpan
    Sarkar, Avijit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 813 - 822
  • [6] On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons
    Yoldas, Halil Ibrahim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (12)
  • [7] Isometries on almost Ricci-Yamabe solitons
    Khatri, Mohan
    Zosangzuala, C.
    Singh, Jay Prakash
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 127 - 138
  • [8] Characterization of Almost η-Ricci–Yamabe Soliton and Gradient Almost η-Ricci–Yamabe Soliton on Almost Kenmotsu Manifolds
    Somnath Mondal
    Santu Dey
    Arindam Bhattacharyya
    Acta Mathematica Sinica, English Series, 2023, 39 : 728 - 748
  • [9] Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons
    Haseeb, Abdul
    Bilal, Mohd
    Chaubey, Sudhakar K.
    Khan, Mohammad Nazrul Islam
    AXIOMS, 2022, 11 (09)
  • [10] Characterization of Almost η-Ricci–Yamabe Soliton and Gradient Almost η-Ricci–Yamabe Soliton on Almost Kenmotsu Manifolds
    Somnath MONDAL
    Santu DEY
    Arindam BHATTACHARYYA
    Acta Mathematica Sinica,English Series, 2023, (04) : 728 - 748