Finite Gabor systems and uncertainty principle for block sliding discrete Fourier transform

被引:3
作者
Poumai, Khole Timothy [1 ]
Khanna, Nikhil [2 ]
Kaushik, S. K. [3 ]
机构
[1] Univ Delhi, Motilal Nehru Coll, Dept Math, Delhi 110021, India
[2] Sultan Qaboos Univ, Coll Sci, Dept Math, POB 36, Muscat 123, Oman
[3] Univ Delhi, Kirori Mal Coll, Dept Math, Delhi 110007, India
关键词
Oversampling; uncertainty principle; finite Gabor frames; block sliding discrete Fourier transform;
D O I
10.2298/FIL2308361P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the finite Gabor system for oversampling schemes. A characterization of dual finite Gabor tight frame using discrete time Zak transform is given. Also, a method to calculate the coefficients of the finite Gabor system expansion in the case of oversampling and a necessary and sufficient condition for the existence of biorthogonal pair of Riesz basis in l2(ZL) is given. Further, we introduce the notion of block sliding discrete Fourier transform (BSDFT) which reduces the computational complexity and give uncertainty principle for BSDFT. An uncertainty principle for two finite Parseval Gabor frames in terms of sparse representations is given. Finally, using the notion of numerical sparsity, an uncertainty principle for finite Gabor frames is given.
引用
收藏
页码:2361 / 2376
页数:16
相关论文
共 9 条
[1]   Non-isotropic angular Stockwell transform and the associated uncertainty principles [J].
Shah, Firdous A. ;
Tantary, Azhar Y. .
APPLICABLE ANALYSIS, 2021, 100 (04) :835-859
[2]   Orthogonal Gabor Systems on Local Fields [J].
Shah, Firdous A. ;
Ahmad, Owais ;
Sheikh, Neyaz A. .
FILOMAT, 2017, 31 (16) :5193-5201
[3]  
Sharma SK, 2019, J MATH PHYS ANAL GEO, V15, P395
[4]  
Vaidyanathan P.P., 1993, Multirate Systems and Filter Banks
[5]  
Vetterli M., 2014, FDN SIGNAL PROCESSIN
[6]   DISCRETE GABOR EXPANSIONS [J].
WEXLER, J ;
RAZ, S .
SIGNAL PROCESSING, 1990, 21 (03) :207-220
[7]   FINITE TRANSLATIONS IN SOLID-STATE PHYSICS [J].
ZAK, J .
PHYSICAL REVIEW LETTERS, 1967, 19 (24) :1385-&
[8]  
Zeevi Y. Y., 1992, Journal of Visual Communication and Image Representation, V3, P13, DOI 10.1016/1047-3203(92)90027-Q
[9]  
Zibulski M., 1992, ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech and Signal Processing (Cat. No.92CH3103-9), P281, DOI 10.1109/ICASSP.1992.226196