Generative adversarial network-based post-processed image super-resolution technology for accelerating brain MRI: comparison with compressed sensing

被引:5
作者
Ueki, Wataru [1 ]
Nishii, Tatsuya [1 ]
Umehara, Kensuke [2 ,3 ,4 ]
Ota, Junko [2 ,3 ,4 ]
Higuchi, Satoshi [1 ]
Ohta, Yasutoshi [1 ]
Nagai, Yasuhiro [1 ]
Murakawa, Keizo [1 ]
Ishida, Takayuki [4 ]
Fukuda, Tetsuya [1 ]
机构
[1] Natl Cerebral & Cardiovasc Ctr, Dept Radiol, 6-1 Kishibe Shinmachi, Suita, Osaka 5648565, Japan
[2] Natl Inst Quantum Sci & Technol, QST Hosp, Med Informat Sect, Chiba, Japan
[3] Natl Inst Quantum Sci & Technol, Inst Quantum Med Sci, Dept Mol Imaging & Theranost, Appl MRI Res, Chiba, Japan
[4] Osaka Univ, Grad Sch Med, Dept Med Phys & Engn, Suita, Osaka, Japan
关键词
Brain; magnetic resonance imaging; acceleration; deep learning; super resolution; QUALITY ASSESSMENT; RECONSTRUCTION;
D O I
10.1177/02841851221076330
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background It is unclear whether deep-learning-based super-resolution technology (SR) or compressed sensing technology (CS) can accelerate magnetic resonance imaging (MRI) . Purpose To compare SR accelerated images with CS images regarding the image similarity to reference 2D- and 3D gradient-echo sequence (GRE) brain MRI. Material and Methods We prospectively acquired 1.3x and 2.0x faster 2D and 3D GRE images of 20 volunteers from the reference time by reducing the matrix size or increasing the CS factor. For SR, we trained the generative adversarial network (GAN), upscaling the low-resolution images to the reference images with twofold cross-validation. We compared the structural similarity (SSIM) index of accelerated images to the reference image. The rate of incorrect answers of a radiologist discriminating faster and reference image was used as a subjective image similarity (ISM) index. Results The SR demonstrated significantly higher SSIM than the CS (SSIM=0.9993-0.999 vs. 0.9947-0.9986; P < 0.001). In 2D GRE, it was challenging to discriminate the SR image from the reference image, compared to the CS (ISM index 40% vs. 17.5% in 1.3x; P = 0.039 and 17.5% vs. 2.5% in 2.0x; P = 0.034). In 3D GRE, the CS revealed a significantly higher ISM index than the SR (22.5% vs. 2.5%; P = 0.011) in 2.0 x faster images. However, the ISM index was identical for the 2.0x CS and 1.3x SR (22.5% vs. 27.5%; P = 0.62) with comparable time costs. Conclusion The GAN-based SR outperformed CS in image similarity with 2D GRE for MRI acceleration. In addition, CS was more advantageous in 3D GRE than SR.
引用
收藏
页码:336 / 345
页数:10
相关论文
共 37 条
[1]   Accelerated Late Gadolinium Enhancement Cardiac MR Imaging with Isotropic Spatial Resolution Using Compressed Sensing: Initial Experience1 [J].
Akcakaya, Mehmet ;
Rayatzadeh, Hussein ;
Basha, Tamer A. ;
Hong, Susie N. ;
Chan, Raymond H. ;
Kissinger, Kraig V. ;
Hauser, Thomas H. ;
Josephson, Mark E. ;
Manning, Warren J. ;
Nezafat, Reza .
RADIOLOGY, 2012, 264 (03) :691-699
[2]   Deep Learning-Based Superresolution Reconstruction for Upper Abdominal Magnetic Resonance Imaging An Analysis of Image Quality, Diagnostic Confidence, and Lesion Conspicuity [J].
Almansour, Haidara ;
Gassenmaier, Sebastian ;
Nickel, Dominik ;
Kannengiesser, Stephan ;
Afat, Saif ;
Weiss, Jakob ;
Hoffmann, Rudiger ;
Othman, Ahmed E. .
INVESTIGATIVE RADIOLOGY, 2021, 56 (08) :509-516
[3]   From Compressed-Sensing to Artificial Intelligence-Based Cardiac MRI Reconstruction [J].
Bustin, Aurelien ;
Fuin, Niccolo ;
Botnar, Rene M. ;
Prieto, Claudia .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
[4]   Promise and Potential Pitfalls: Re-creating Images or Generating New Images for AI Modeling [J].
Chan, Heang-Ping .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (04)
[5]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[6]   Wavelet Improved GAN for MRI reconstruction [J].
Chen, Yutong ;
Firmin, David ;
Yang, Guang .
MEDICAL IMAGING 2021: PHYSICS OF MEDICAL IMAGING, 2021, 11595
[7]   Compressed sensing MRI of different organs: ready for clinical daily practice? [J].
Delattre, Benedicte Marie Anne ;
Boudabbous, Sana ;
Hansen, Catrina ;
Neroladaki, Angeliki ;
Hachulla, Anne-Lise ;
Vargas, Maria Isabel .
EUROPEAN RADIOLOGY, 2020, 30 (01) :308-319
[8]   An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI [J].
Ebner, Michael ;
Wang, Guotai ;
Li, Wenqi ;
Aertsen, Michael ;
Patel, Premal A. ;
Aughwane, Rosalind ;
Melbourne, Andrew ;
Doel, Tom ;
Dymarkowski, Steven ;
De Coppi, Paolo ;
David, Anna L. ;
Deprest, Jan ;
Ourselin, Sebastien ;
Vercauteren, Tom .
NEUROIMAGE, 2020, 206
[9]   Super-resolution for upper abdominal MRI: Acquisition and post-processing protocol optimization using brain MRI control data and expert reader validation [J].
Ebner, Michael ;
Patel, Premal A. ;
Atkinson, David ;
Caselton, Lucy ;
Firmin, Louisa ;
Amin, Zahir ;
Bainbridge, Alan ;
De Coppi, Paolo ;
Taylor, Stuart A. ;
Ourselin, Sebastien ;
Chouhan, Manil D. ;
Vercauteren, Tom .
MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (05) :1905-1919
[10]   Deep-learning-based image quality enhancement of compressed sensing magnetic resonance imaging of vessel wall: comparison of self-supervised and unsupervised approaches [J].
Eun, Da-In ;
Jang, Ryoungwoo ;
Ha, Woo Seok ;
Lee, Hyunna ;
Jung, Seung Chai ;
Kim, Namkug .
SCIENTIFIC REPORTS, 2020, 10 (01)