Enhancing Privacy in Large Language Model with Homomorphic Encryption and Sparse Attention

被引:4
作者
Zhang, Lexin [1 ]
Li, Changxiang [1 ]
Hu, Qi [1 ]
Lang, Jingjing [1 ]
Huang, Sirui [1 ]
Hu, Linyue [1 ]
Leng, Jingwen [1 ]
Chen, Qiuhan [1 ]
Lv, Chunli [1 ]
机构
[1] China Agr Univ, Beijing 100083, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 24期
基金
中国国家自然科学基金;
关键词
privacy-preserving dialogue systems; Fully Homomorphic Encryption; dynamic sparse attention mechanism; data security in artificial intelligence; large language model;
D O I
10.3390/app132413146
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In response to the challenges of personal privacy protection in the dialogue models of the information era, this study introduces an innovative privacy-preserving dialogue model framework. This framework seamlessly incorporates Fully Homomorphic Encryption (FHE) technology with dynamic sparse attention (DSA) mechanisms, aiming to enhance the response efficiency and accuracy of dialogue systems without compromising user privacy. Experimental comparative analyses have confirmed the advantages of the proposed framework in terms of precision, recall, accuracy, and latency, with values of 0.92, 0.91, 0.92, and 15 ms, respectively. In particular, the newly proposed DSA module, while ensuring data security, significantly improves performance by up to 100 times compared to traditional multi-head attention mechanisms.
引用
收藏
页数:19
相关论文
共 35 条
[1]   FINAL: Faster FHE Instantiated with NTRU and LWE [J].
Bonte, Charlotte ;
Iliashenko, Ilia ;
Park, Jeongeun ;
Pereira, Hilder V. L. ;
Smart, Nigel P. .
ADVANCES IN CRYPTOLOGY- ASIACRYPT 2022, PT II, 2022, 13792 :188-215
[2]   Two-Party Privacy-Preserving Set Intersection with FHE [J].
Cai, Yunlu ;
Tang, Chunming ;
Xu, Qiuxia .
ENTROPY, 2020, 22 (12) :1-15
[3]   SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output [J].
Chen, Junxiong ;
Zhang, Yu ;
Wu, Ji ;
Cheng, Weisong ;
Zhu, Qiao .
ENERGY, 2023, 262
[4]  
Chen T, 2022, arXiv
[5]  
Devlin J, 2019, Arxiv, DOI [arXiv:1810.04805, DOI 10.48550/ARXIV.1810.04805]
[6]   An efficient approach for secure multi-party computation without authenticated channel [J].
Duy-Hien Vu ;
The-Dung Luong ;
Tu-Bao Ho .
INFORMATION SCIENCES, 2020, 527 :356-368
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[9]   Big data security and privacy protection model based on image encryption algorithm [J].
Hua, Binjie ;
Wang, Zhe ;
Meng, Junying ;
Xi, HaiYan ;
Qi, RuiLi .
SOFT COMPUTING, 2023,
[10]   Jigsaw: Large Language Models meet Program Synthesis [J].
Jain, Naman ;
Vaidyanath, Skanda ;
Iyer, Arun ;
Natarajan, Nagarajan ;
Parthasarathy, Suresh ;
Rajamani, Sriram ;
Sharma, Rahul .
2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, :1219-1231