Energy-aware parameter tuning for mixed workloads in cloud server

被引:4
作者
Liang, Jiechao [1 ]
Lin, Weiwei [1 ]
Xu, Yangguang [2 ]
Liu, Yubin [2 ]
Mo, Ruichao [1 ]
Luo, Xiaoxuan [1 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Guangzhou Digital Govt Operat Ctr, Cloud Serv Ctr Management Dept, Guangzhou 510635, Peoples R China
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2024年 / 27卷 / 04期
基金
中国国家自然科学基金;
关键词
Cloud server; Energy efficiency; Mixed workloads; Parameter tuning; DVFS;
D O I
10.1007/s10586-023-04212-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Server energy consumption constitutes a significant portion of the overall energy usage in cloud data centers. Achieving energy optimization through tuning server parameter configurations is of paramount importance for energy conservation within cloud data centers. However, due to the diverse and dynamic nature of mixed workloads in cloud servers, achieving highly energy efficient server parameter configurations often necessitates continuous adjustments and optimizations in response to workload fluctuations. To tackle this challenge, this paper introduces an energy-efficient optimization method for cloud servers tailored to scenarios with mixed workloads, known as Energy-aware Parameter Tuning for Mixed Workloads (EPTMW). This method dynamically performs joint tuning of CPU frequency and system kernel parameters based on the operational status of the real-time workloads. Additionally, we evaluate EPTMW using benchmark workloads from BenchSEE and SERT. The experimental results demonstrate that EPTMW can enhance energy efficiency by 28.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} compared to the energy efficiency level achieved under the default server parameter configuration, all while maintaining server performance.
引用
收藏
页码:4805 / 4821
页数:17
相关论文
共 46 条
[1]   Combinatorial meta-heuristics approaches for DVFS-enabled green clouds [J].
Amulu, Lourdes Mary ;
Ramraj, Ravi .
JOURNAL OF SUPERCOMPUTING, 2020, 76 (08) :5825-5834
[2]  
[Anonymous], 2023, TUNED PROJECT
[3]   Optimal Column Layout for Hybrid Workloads [J].
Athanassoulis, Manos ;
Bogh, Kenneth S. ;
Idreos, Stratos .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (13) :2393-2407
[4]   An Overview of Evolutionary Algorithms for Parameter Optimization [J].
Baeck, Thomas ;
Schwefel, Hans-Paul .
EVOLUTIONARY COMPUTATION, 1993, 1 (01) :1-23
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   A Black-box Monitoring Approach to Measure Microservices Runtime Performance [J].
Brondolin, Rolando ;
Santambrogio, Marco D. .
ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2020, 17 (04)
[7]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[8]  
Chi R., 2012, P 4 AS PAC S INT, P1
[9]  
Committee S., 2021, SERVER EFFICIENCY RA
[10]  
Drucker H, 1997, ADV NEUR IN, V9, P155