Remaining useful life prediction for lithium-ion batteries based on sliding window technique and Box-Cox transformation

被引:0
作者
Liu, Kang [1 ]
Kang, Longyun [1 ]
Wan, Lei [1 ]
Xie, Di [1 ]
Li, Jie [1 ]
机构
[1] South China Univ Technol, Sch Elect Power, Guangzhou 510641, Peoples R China
关键词
Remaining useful life; Lithium -ion battery; Sliding window technique; Box -Cox transformation; Monte Carlo simulation; MODEL; PROGNOSTICS; MANAGEMENT; STATE;
D O I
10.1016/j.est.2023.109352
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate remaining useful life (RUL) prediction technique matters in lithium-ion battery use, optimization, and replacement. This article presents an RUL prediction method combining the sliding window (SW) technique and Box-Cox transformation (BCT). This method achieves online RUL prediction with acceptable accuracy, is independent of offline training data, and only brings a low computational burden. The SW technique is employed for gathering a certain amount of capacity data, which is subsequently transformed using BCT-related techniques to construct a capacity degradation model. The identified model is then extrapolated to predict battery RUL, and the prediction uncertainties are calculated through Monte Carlo (MC) simulation. A simple implementation shows that this hybrid method outperforms the history-based polynomial and BCT methods in battery RUL prediction. Given the segmented capacity degradation trend, a constraint can be imposed on the model parameter for optimization purposes. Experimental results demonstrate that the optimized method obtains lower root-meansquare errors (RMSEs) of RUL predictions during the last 20 % of the battery lifetime than the original one, and the precise RULs are predicted with standard deviations mainly within [1, 10] cycles.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Remaining Useful Life Prediction of Lithium-ion Batteries Based on a Hybrid Model
    Lv, Haizhen
    Shen, Dongxu
    Yang, Zhigang
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1003 - 1008
  • [32] A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction
    Feng, Hailin
    Song, Dandan
    JOURNAL OF ENERGY STORAGE, 2021, 34
  • [33] Lithium-ion battery remaining useful life prediction based on GRU-RNN
    Song, Yuchen
    Li, Lyu
    Peng, Yu
    Liu, Datong
    12TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY, AND SAFETY (ICRMS 2018), 2018, : 317 - 322
  • [34] Prediction of Remaining Useful Life of the Lithium-Ion Battery Based on Improved Particle Filtering
    Wu, Tiezhou
    Zhao, Tong
    Xu, Siyun
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [35] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect
    Xu, Xiaodong
    Yu, Chuanqiang
    Tang, Shengjin
    Sun, Xiaoyan
    Si, Xiaosheng
    Wu, Lifeng
    ENERGIES, 2019, 12 (09)
  • [36] Remaining useful life prediction for lithium-ion batteries using particle filter and artificial neural network
    Qin, Wei
    Lv, Huichun
    Liu, Chengliang
    Nirmalya, Datta
    Jahanshahi, Peyman
    INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2020, 120 (02) : 312 - 328
  • [37] Remaining Useful Life Prediction of Lithium-Ion Batteries Using Multi-model Gaussian Process
    Li, Meng
    Sadoughi, Mohammadkazem
    Shen, Sheng
    Hu, Chao
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [38] Remaining useful life assessment of lithium-ion batteries in implantable medical devices
    Hu, Chao
    Ye, Hui
    Jain, Gaurav
    Schmidt, Craig
    JOURNAL OF POWER SOURCES, 2018, 375 : 118 - 130
  • [39] Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Zhang, Yongzhi
    Xiong, Rui
    He, Hongwen
    Pecht, Michael G.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (07) : 5695 - 5705
  • [40] Remaining Useful Lifetime Prediction of Lithium-Ion Batteries Based on Fragment Data and Trend Identification
    Lu, Yiqing
    Shi, Ye
    Liu, Yu
    Wang, Haoyu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, : 3666 - 3675