Anisotropic elliptic equations with gradient-dependent lower order terms and L1 data

被引:8
作者
Brandolini, Barbara [1 ]
Cirstea, Florica C. [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
来源
MATHEMATICS IN ENGINEERING | 2023年 / 5卷 / 04期
基金
澳大利亚研究理事会;
关键词
nonlinear anisotropic elliptic equations; Leray-Lions operators; pseudo-monotone operators; lower order terms; summable data; NATURAL GROWTH TERMS; EXISTENCE; REGULARITY;
D O I
10.3934/mine.2023073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a weak solution for a general class of Dirichlet anisotropic elliptic problems such as Au + phi(x, u, del u) =B3u + f in Omega, where Omega is a bounded open subset of R-N and f is an element of L-1(Omega) is arbitrary. The principal part is a divergence-form nonlinear anisotropic operator A, the prototype of which is Au = - Sigma(N)(j=1) partial derivative(j) (vertical bar partial derivative(j)u vertical bar(pj-2)partial derivative(j)u) with p(j) > 1 for all 1 <= j <= N and Sigma(N)(j=1)(1/p(j)) > 1. As a novelty in this paper, our lower order terms involve a new class of operators B such that A - B is bounded, coercive and pseudo-monotone from W-0(1 (p) over right arrow) (Omega) into its dual, as well as a gradient-dependent p nonlinearity Phi with an "anisotropic natural growth " in the gradient and a good sign condition.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 44 条
  • [1] Fully anisotropic elliptic problems with minimally integrable data
    Alberico, Angela
    Chlebicka, Iwona
    Cianchi, Andrea
    Zatorska-Goldstein, Anna
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
  • [2] Comparison results for nonlinear anisotropic parabolic problems
    Alberico, Angela
    Di Blasio, Giuseppina
    Feo, Filomena
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2017, 28 (02) : 305 - 322
  • [3] Sharp a priori estimates for a class of nonlinear elliptic equations with lower order terms
    Alvino, A.
    Ferone, V.
    Mercaldo, A.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (04) : 1169 - 1201
  • [4] Alvino A., 2008, B UNIONE MAT ITAL, V1, P645
  • [5] Antontsev S., 2002, Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics, V48, DOI [10.1007/978-1-4612-0091-8, DOI 10.1007/978-1-4612-0091-8]
  • [6] Antontsev S, 2006, HBK DIFF EQUAT STATI, V3, P1, DOI 10.1016/S1874-5733(06)80005-7
  • [7] Antontsev S, 2008, DIFFER INTEGRAL EQU, V21, P401
  • [8] INTRINSIC GEOMETRY AND DE GIORGI CLASSES FOR CERTAIN ANISOTROPIC PROBLEMS
    Baroni, Paolo
    Di Castro, Agnese
    Palatucci, Giampiero
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (04): : 647 - 659
  • [9] Nonlinear anisotropic elliptic and parabolic equations in RN with advection and lower order terms and locally integrable data
    Bendahmane, M
    Karlsen, K
    [J]. POTENTIAL ANALYSIS, 2005, 22 (03) : 207 - 227
  • [10] BENSOUSSAN A, 1988, ANN I H POINCARE-AN, V5, P347