Adaptation of Multi-target Tracker Using Neural Networks in Drone Surveillance Radar

被引:3
作者
Goodall, Finn [1 ]
Ahmad, Bashar I. [1 ]
机构
[1] Aveillant, Land & Air Syst LAS, Cambridge, England
来源
2023 IEEE RADAR CONFERENCE, RADARCONF23 | 2023年
关键词
Neural network; multi-target tracking; Kalman filter; stone soup; non-cooperative surveillance; radar; INTENT PREDICTION; TARGET TRACKING; FILTER;
D O I
10.1109/RADARCONF2351548.2023.10149795
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this paper, we present a study on adapting a radar multi-target tracker using neural networks to enhance its performance against agile, maneuvering, targets such as drones. In particular, a network dynamically adjusts the process noise of the target motion model based on the normalised filtering innovations. Different neural networks are evaluated for this task, namely fully connected, recurrent and convolutional networks. They are trained on representative simulated data, including waypoint-driven trajectories which are common with (semi-) autonomous systems, e.g. small unmanned air systems. Results from synthetic radar data demonstrate the potential benefits of adapting a multi-target tracker with a low-complexity recurrent neural network, albeit the modest improvements it achieves.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
Ahmad B. I., 2022, IET Conference Proceedings, P1, DOI 10.1049/icp.2022.2282
[2]   Bayesian Intent Prediction in Object Tracking Using Bridging Distributions [J].
Ahmad, Bashar I. ;
Murphy, James K. ;
Langdon, Patrick M. ;
Godsill, Simon J. .
IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (01) :215-227
[3]  
Bai H., 2020, 2020 IEEE 23 INT C I, P1
[4]   The Probabilistic Data Association Filter ESTIMATION IN THE PRESENCE OF MEASUREMENT ORIGIN UNCERTAINTY [J].
Bar-Shalom, Yaakov ;
Daum, Fred ;
Huang, Jim .
IEEE CONTROL SYSTEMS MAGAZINE, 2009, 29 (06) :82-100
[5]   Stone Soup open source framework for tracking and state estimation: enhancements and applications [J].
Barr, Jordi ;
Harrald, Oliver ;
Hiscocks, Steven ;
Perree, Nicola ;
Pritchett, Henry ;
Vidal, Sebastien ;
Wright, James ;
Carniglia, Peter ;
Hunter, Emily ;
Kirkland, David ;
Raval, Divy ;
Zheng, Siyuan ;
Young, Anne ;
Balaji, Bhashyam ;
Maskell, Simon ;
Hernandez, Marcel ;
Vladimirov, Lyudmil .
SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXXI, 2022, 12122
[6]   AN ADAPTIVE 2-DIMENSIONAL KALMAN TRACKING FILTER [J].
CASTELLA, FR .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1980, 16 (06) :822-829
[7]   Long Short-Term Memory Kalman Filters: Recurrent Neural Estimators for Pose Regularization [J].
Coskun, Huseyin ;
Achilles, Felix ;
DiPietro, Robert ;
Navab, Nassir ;
Tombari, Federico .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5525-5533
[8]   Interference Motion Removal for Doppler Radar Vital Sign Detection Using Variational Encoder-Decoder Neural Network [J].
Czerkawski, Mikolaj ;
Ilioudis, Christos ;
Clemente, Carmine ;
Michie, Craig ;
Andonovic, Ivan ;
Tachtatzis, Christos .
2021 IEEE RADAR CONFERENCE (RADARCONF21): RADAR ON THE MOVE, 2021,
[9]  
Gan R, 2022, INT C INFORM FUSION, P1
[10]   Modeling intent and destination prediction within a Bayesian framework: Predictive touch as a usecase [J].
Gan, Runze ;
Liang, Jiaming ;
Ahmad, Bashar, I ;
Godsill, Simon .
DATA-CENTRIC ENGINEERING, 2020, 1 (03)