State-of-Charge and State-of-Health variable-gain estimation based on tracking sliding mode differentiators for an electric vehicle Lithium-ion battery

被引:6
|
作者
Fornaro, Pedro [1 ]
Puleston, Paul [1 ]
Battaiotto, Pedro [1 ]
机构
[1] Univ Nacl La Plata, Fac Ingn, Inst LEICI UNLP CONICET, 48 & 116 S-N, RA-1900 La Plata, Bs As, Argentina
关键词
Lithium-ion battery; Tracking sliding mode differentiator; Parameter estimation; State-of-Charge; State-of-Health; Electric vehicle; INCREMENTAL CAPACITY ANALYSIS; EQUIVALENT-CIRCUIT MODELS; KALMAN FILTER; ONLINE ESTIMATION; EXCITATION; VOLTAGE; SYSTEM; SOH;
D O I
10.1016/j.est.2023.107298
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, new methods to provide on-line measures of the State-of-Charge and State-of-Health of Lithium -ion batteries intended for vehicular applications are presented. The proposal is based on an estimation methodology formulated to determine, and accurately track the variations of the time-varying parameters of an equivalent electric circuit model employed for system modelling during vehicle operation.The proposed Lithium-ion battery parameter estimation method successfully combines recently developed differentiation techniques, i.e. high-order Tracking Sliding Mode differentiators, with a recursive least squares with forgetting factor algorithm, that includes a variable-gain specifically designed for this application. The parameter estimates are employed to efficiently compute the evolution of the State-of-Charge and the State-of-Health.Finally, to assess the algorithms performance, in-silico evaluations are conducted utilising power profiles taken from standardised driving cycles.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles
    Espedal, Ingvild B.
    Jinasena, Asanthi
    Burheim, Odne S.
    Lamb, Jacob J.
    ENERGIES, 2021, 14 (11)
  • [32] Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
    J. Xu
    Y. Jia
    B. Liu
    H. Zhao
    H. Yu
    J. Li
    S. Yin
    Experimental Mechanics, 2018, 58 : 633 - 643
  • [33] Enhanced lithium-ion battery state-of-charge estimation for Electric Vehicles using the AOA-DNN approach
    Thangaraj, Kokilavani
    Indiran, Rajarajeswari
    Ananth, Vasantharaj
    Raman, Mohan
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (06) : 2856 - 2873
  • [34] Enhanced state-of-charge and state-of-health estimation of lithium-ion battery incorporating machine learning and swarm intelligence algorithm
    Wang, Chengchao
    Su, Yingying
    Ye, Jinlu
    Xu, Peihang
    Xu, Enyong
    Ouyang, Tiancheng
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [35] A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring
    Weng, Caihao
    Sun, Jing
    Peng, Huei
    JOURNAL OF POWER SOURCES, 2014, 258 : 228 - 237
  • [36] A review of state-of-health estimation for lithium-ion battery packs
    Li, Qingwei
    Song, Renjie
    Wei, Yongqiang
    JOURNAL OF ENERGY STORAGE, 2025, 118
  • [37] Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
    Xu, J.
    Jia, Y.
    Liu, B.
    Zhao, H.
    Yu, H.
    Li, J.
    Yin, S.
    EXPERIMENTAL MECHANICS, 2018, 58 (04) : 633 - 643
  • [38] Robust Estimation for State-of-Charge and State-of-Health of Lithium-Ion Batteries Using Integral-Type Terminal Sliding-Mode Observers
    Feng, Yong
    Xue, Chen
    Han, Qing-Long
    Han, Fengling
    Du, Jiacheng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (05) : 4013 - 4023
  • [39] State of Charge Estimation of a Lithium-Ion Battery for Electric Vehicle based on Particle Swarm Optimization
    Ismail, Nur Hazima Faezaa
    Toha, Siti Fauziah
    2013 IEEE INTERNATIONAL CONFERENCE ON SMART INSTRUMENTATION, MEASUREMENT AND APPLICATIONS (ICSIMA 2013), 2013,
  • [40] State-of-Charge Estimation for Lithium-Ion Battery Base on Adaptive Extended Sliding Innovation Filter
    Wang, Zhuo
    Shen, Jinrong
    Xu, Yang
    ENERGIES, 2024, 17 (14)