State-of-Charge and State-of-Health variable-gain estimation based on tracking sliding mode differentiators for an electric vehicle Lithium-ion battery

被引:6
|
作者
Fornaro, Pedro [1 ]
Puleston, Paul [1 ]
Battaiotto, Pedro [1 ]
机构
[1] Univ Nacl La Plata, Fac Ingn, Inst LEICI UNLP CONICET, 48 & 116 S-N, RA-1900 La Plata, Bs As, Argentina
关键词
Lithium-ion battery; Tracking sliding mode differentiator; Parameter estimation; State-of-Charge; State-of-Health; Electric vehicle; INCREMENTAL CAPACITY ANALYSIS; EQUIVALENT-CIRCUIT MODELS; KALMAN FILTER; ONLINE ESTIMATION; EXCITATION; VOLTAGE; SYSTEM; SOH;
D O I
10.1016/j.est.2023.107298
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, new methods to provide on-line measures of the State-of-Charge and State-of-Health of Lithium -ion batteries intended for vehicular applications are presented. The proposal is based on an estimation methodology formulated to determine, and accurately track the variations of the time-varying parameters of an equivalent electric circuit model employed for system modelling during vehicle operation.The proposed Lithium-ion battery parameter estimation method successfully combines recently developed differentiation techniques, i.e. high-order Tracking Sliding Mode differentiators, with a recursive least squares with forgetting factor algorithm, that includes a variable-gain specifically designed for this application. The parameter estimates are employed to efficiently compute the evolution of the State-of-Charge and the State-of-Health.Finally, to assess the algorithms performance, in-silico evaluations are conducted utilising power profiles taken from standardised driving cycles.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] State-of-Charge and State-of-Health Estimating Method for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Wang, Jhih-Kai
    Moo, Chin-Sien
    Kawamura, Atsuo
    2016 IEEE 17TH WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL), 2016,
  • [22] Enhanced state-of-charge and state-of-health estimation of lithium-ion battery incorporating machine learning and swarm intelligence algorithm
    Wang, Chengchao
    Su, Yingying
    Ye, Jinlu
    Xu, Peihang
    Xu, Enyong
    Ouyang, Tiancheng
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [23] A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries
    Ren, Zhong
    Du, Changqing
    ENERGY REPORTS, 2023, 9 : 2993 - 3021
  • [24] State-of-Health Estimation of Lithium-Ion Battery Based on Interval Capacity for Electric Buses
    Ye, Baolin
    Zhang, Zhaosheng
    Wang, Shuai
    Ma, Yucheng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02): : 6096 - 6106
  • [25] Robust Estimation for State-of-Charge and State-of-Health of Lithium-Ion Batteries Using Integral-Type Terminal Sliding-Mode Observers
    Feng, Yong
    Xue, Chen
    Han, Qing-Long
    Han, Fengling
    Du, Jiacheng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (05) : 4013 - 4023
  • [26] Online State-of-Charge and State-of-Health Estimation of Lithium Battery Based on Equivalent Circuit Model
    Kung, Chung-Chun
    Chang, Shuo-Chieh
    Chen, Ti-Hung
    NEW TRENDS ON SYSTEM SCIENCES AND ENGINEERING, 2015, 276 : 433 - 446
  • [27] A neural network based state-of-health estimation of lithium-ion battery in electric vehicles
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2059 - 2064
  • [28] Multi-time-scale observer design for state-of-charge and state-of-health of a lithium-ion battery
    Zou, Changfu
    Manzie, Chris
    Nesic, Dragan
    Kallapur, Abhijit G.
    JOURNAL OF POWER SOURCES, 2016, 335 : 121 - 130
  • [29] State of Charge Estimation of Power Lithium-ion Battery Based on Sliding Mode Observer
    Wu Tie-zhou
    Wang Ming-yue
    Xiao Qin
    ENERGY AND POWER TECHNOLOGY, PTS 1 AND 2, 2013, 805-806 : 1692 - +
  • [30] A Dynamic State-of-Charge Estimation Method for Electric Vehicle Lithium-Ion Batteries
    Liu, Xintian
    Deng, Xuhui
    He, Yao
    Zheng, Xinxin
    Zeng, Guojian
    ENERGIES, 2020, 13 (01)