A lightweight time series method for prediction of solar radiation

被引:1
|
作者
Hissou, Hasna [1 ]
Benkirane, Said [2 ]
Guezzaz, Azidine [2 ]
Azrour, Mourade [3 ]
Beni-Hssane, Abderrahim [1 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, Sci & Technol Res Struct, El Jadida, Morocco
[2] Cadi Ayyad Univ, Technol Higher Sch Essaouira, Marrakech, Morocco
[3] Moulay Ismail Univ Meknes, Fac Sci & Tech, IDMS Team, Meknes, Morocco
关键词
Solar radiation; Renewable energy; Forecasting; Feature selection; Times series; ARTIFICIAL NEURAL-NETWORK; SUPPORT VECTOR MACHINE; INPUT PARAMETERS; HYBRID MODEL; PART I; IRRADIANCE; REGRESSION; OPTIMIZATION; ALGORITHM; SELECTION;
D O I
10.1007/s12667-024-00657-9
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar radiation (Rs) is vital and profoundly influences the environment. Accurate forecasting of Rs is crucial in renewable energy applications, despite its nonlinearity and dependency on loads. To overcome limitations in measurement tools, various methodologies are employed to estimate Rs using alternative environmental parameters. In our article, we present an innovative framework that explores the impact of feature selection (FS) on time series for accurate global Rs forecasting. This framework provides a holistic approach to recursive feature elimination (RFE) and its integration with various models such as random forest (RF), Decision Tree (DT), Logistic Regression (LR), Classification and Regression Tree (CART), Person (Per) and Gradient Boosting Models (GBM). The obtained results reveal that the CART, LR, and GBM models exhibit strong predictive accuracies of 0.894, 0.884, and 0.882, respectively. Notably, these three methods demonstrate a consistent standard deviation (std) of 0.033, indicating stability in their performance. Evaluating the normalized mean absolute error (nMAE) standard deviation (std), the models achieve values of 0.892 (0.029), 0.885 (0.034), and 0.885 (0.035) respectively. Additionally, the RFE algorithm showcases the significant impact of input lags as features and delivers good performance. Beyond accuracy, our findings hold practical implications for renewable energy planning, daily operation of solar power plants, and investment decision-making, contributing to the optimization and sustainability of solar energy systems.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] Constrained Flooding Based on Time Series Prediction and Lightweight GBN in BLE Mesh
    Li, Junxiang
    Li, Mingxia
    Wang, Li
    SENSORS, 2024, 24 (14)
  • [22] Nonlinear Modeling of Solar Radiation and Wind Speed Time Series
    Haupt, Sue Ellen
    INTERNATIONAL STATISTICAL REVIEW, 2018, 86 (01) : 161 - 161
  • [23] Additive versus Multiplicative Seasonality in Solar Radiation Time Series
    Boland, John
    21ST INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2015), 2015, : 1126 - 1132
  • [24] Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation
    Gurel, Ali Etem
    Agbulut, Umit
    Bicen, Yunus
    JOURNAL OF CLEANER PRODUCTION, 2020, 277
  • [25] BFAST Lite: A Lightweight Break Detection Method for Time Series Analysis
    Masiliunas, Dainius
    Tsendbazar, Nandin-Erdene
    Herold, Martin
    Verbesselt, Jan
    REMOTE SENSING, 2021, 13 (16)
  • [26] Development of statistical time series models for solar power prediction
    Prema, V.
    Rao, K. Uma
    RENEWABLE ENERGY, 2015, 83 : 100 - 109
  • [27] Improving Solar Flare Prediction by Time Series Outlier Detection
    Wen, Junzhi
    Islam, Md Reazul
    Ahmadzadeh, Azim
    Angryk, Rafal A.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT II, 2023, 13589 : 152 - 164
  • [28] Solar Power Time Series Prediction Using Wavelet Analysis
    Soufiane, Gaizen
    Ouafia, Fadi
    Ahmed, Abbou
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2020, 10 (04): : 1764 - 1773
  • [29] A method of compositional data time series prediction integrating fuzzy time series analysis
    Tao Z.
    Tan W.
    Chen H.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2023, 43 (05): : 1534 - 1544
  • [30] A method of non-linear time series prediction
    Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
    Syst Sci, 2008, 2 (11-16):