On the exact rate of convergence of digits in Engel expansions

被引:5
作者
Fang, Lulu [1 ]
Shang, Lei [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
[2] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Engel expansions; Rate of convergence of digits; Residual set; Hausdorff dimension; FREQUENCIES; SETS;
D O I
10.1016/j.jmaa.2023.127726
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let phi : N -> R+ be a function satisfying phi(n) -> infinity as n -> infinity. Denote by < d(1)(x), d(2)(x), ..., d(n)(x), ...> the Engel expansion of an irrational number x is an element of(0, 1). We study the Baire classification and Hausdorff dimension of D-phi (alpha, beta) := (x is an element of(0, 1)\ Q : lim inf(n ->infinity) log d(n)(x) - n/phi(n) = alpha, lim sup(n ->infinity) log d(n) (x) - n/phi(n) = beta} for alpha, beta is an element of[-infinity, infinity] with alpha <= beta. Under the condition that phi(n + 1) - phi(n) -> 0 as n -> infinity, we show that the set D-phi(alpha, beta) is residual if and only if alpha = -infinity and beta = infinity. Under the conditions that phi is increasing and phi(n + 1) - phi(n) -> 0 as n -> infinity, we prove that D-phi(alpha, beta) has full Hausdorff dimension for any -infinity <= alpha <= beta <= infinity, which improves the result of Liu and Wu (2003). We also do some similar analyses for the gap of consecutive digits. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 21 条
[1]   Fast and slow points of Birkhoff sums [J].
Bayart, Frederic ;
Buczolich, Zoltan ;
Heurteaux, Yanick .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (12) :3236-3256
[2]  
Borel E., 1947, CR HEBD ACAD SCI, V225, P773
[3]  
ERDoS P., 1958, Annales Universitatis L. Eotvos de Budapest, V1, P7
[4]  
Falconer Kenneth., 1990, Fractal geometry: Mathematical foundations and applications
[5]   On fast Birkhoff averaging [J].
Fan, AH ;
Schmeling, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 135 :443-467
[6]   A NOTE ON RENYI'S 'RECORD' PROBLEM AND ENGEL'S SERIES [J].
Fang, Lulu ;
Wu, Min .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (02) :363-369
[7]   Hausdorff dimension of certain sets arising in Engel expansions [J].
Fang, Lulu ;
Wu, Min .
NONLINEARITY, 2018, 31 (05) :2105-2125
[8]  
Galambos J, 1976, Lecture Notes in Mathematical, V502
[9]  
Konjuhovskii V., 1972, MATH USSR SB, V18, P249
[10]  
LEVY P, 1947, CR HEBD ACAD SCI, V225, P918