Interfacially-enhanced quasi-solid electrolyte using ionic liquid for lithium-ion battery

被引:6
作者
Kim, Minsun [1 ]
Cakmakci, Niluefer [2 ]
Song, Hyeonjun [1 ]
Jeong, Youngjin [2 ,3 ]
机构
[1] Soongsil Univ, Dept Organ Mat & Fiber Engn, Seoul 06978, South Korea
[2] Soongsil Univ, Dept Mat Sci & Engn, Seoul 06978, South Korea
[3] Soongsil Univ, Dept Green Chem & Mat Engn, Seoul 06978, South Korea
基金
新加坡国家研究基金会;
关键词
Composites; Differential scanning calorimetry (DSC); Raman spectroscopy; Electrochemical properties; Ionic conductivity; COMPOSITE POLYMER ELECTROLYTES; PVDF-HFP; CUBIC LI7LA3ZR2O12; CONDUCTIVITY; TRANSPORT;
D O I
10.1016/j.materresbull.2023.112588
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solid-state electrolytes (SEs), promising alternatives to liquid electrolytes (LEs), have their own pros and cons, necessitating exploring combined systems to achieve optimal performance. However, several issues occur due to the poor interface between combined SEs. Herein, Li7La3Zr2O12 (LLZO) inorganic SE and PVDF-HFP (poly (vinylidene fluoride-co-hexafluoropropylene)) solid polymer electrolyte are combined with the ionic liquid BMIM-TFSI (1-Butyl-3-methylimidazoliumbis-(trifluoromethylsulfonyl)imide) to obtain quasi-solid electrolyte (QSE) via a facile method. This study reveals that BMIM-TFSI in PVDF-HFP acts as a plasticizer and has an important role in covering LLZO particles for the properly formed interface between inorganic SE particles and solid polymer electrolyte. Thanks to the well-built interface, the QSE exhibits a high Li-ion transference number (tLi+), good ionic conductivity, and outstanding cycling performance, including a high capacity of 140 mAh g- 1 and stable Coulombic efficiency. Therefore, QSE has high potential as a next-generation SE for lithium batteries with its good electrochemical properties and simple fabrication process.
引用
收藏
页数:9
相关论文
共 55 条
[1]   Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries [J].
Bae, Jiwoong ;
Li, Yutao ;
Zhao, Fei ;
Zhou, Xingyi ;
Ding, Yu ;
Yu, Guihua .
ENERGY STORAGE MATERIALS, 2018, 15 :46-52
[2]  
Boebinger MG, 2019, ECS Meeting Abstracts, VMA2019-0, P512, DOI [10.1149/ma2019-02/6/512, 10.1149/ma2019-02/6/512, DOI 10.1149/MA2019-02/6/512]
[3]   Electrochemical investigation of PVDF: HFP gel polymer electrolytes for quasi-solid-state Li-O2 batteries: effect of lithium salt type and concentration [J].
Celik, Mustafa ;
Kizilaslan, Abdulkadir ;
Can, Mustafa ;
Cetinkaya, Tugrul ;
Akbulut, Hatem .
ELECTROCHIMICA ACTA, 2021, 371
[4]   A Sandwich Structure Composite Solid Electrolyte with Enhanced Interface Stability and Electrochemical Properties For Solid-state Lithium Batteries [J].
Chen, Fei ;
Luo, Jamans ;
Jing, Mao-xiang ;
Li, Jie ;
Huang, Zhen-hao ;
Yang, Hua ;
Shen, Xiang-qian .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (07)
[5]   Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement [J].
Chen, Fei ;
Jing, Mao-xiang ;
Yang, Hua ;
Yuan, Wei-yong ;
Liu, Ming-quan ;
Ji, Yong-sheng ;
Hussain, Shahid ;
Shen, Xiang-qian .
IONICS, 2021, 27 (03) :1101-1111
[6]   All-Solid-State Lithium Battery Fitted with Polymer Electrolyte Enhanced by Solid Plasticizer and Conductive Ceramic Filler [J].
Chen, Fei ;
Zha, Wenping ;
Yang, Dunjie ;
Cao, Shiyu ;
Shen, Qiang ;
Zhang, Lianmeng ;
Sadoway, Donald R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (14) :A3558-A3565
[7]   Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries [J].
Chen, Fei ;
Yang, Dunjie ;
Zha, Wenping ;
Zhu, Bodi ;
Zhang, Yanhua ;
Li, Junyang ;
Gu, Yuping ;
Shen, Qiang ;
Zhang, Lianmeng ;
Sadoway, Donald R. .
ELECTROCHIMICA ACTA, 2017, 258 :1106-1114
[8]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[9]   How Does Nanoscale Crystalline Structure Affect Ion Transport in Solid Polymer Electrolytes? [J].
Cheng, Shan ;
Smith, Derrick M. ;
Li, Christopher Y. .
MACROMOLECULES, 2014, 47 (12) :3978-3986
[10]  
Ding ZL, 2020, J ELECTROCHEM SOC, V167, DOI [10.1149/1945-7111/ab7f84, 10.1149/1145-7111/ab7f84, 10.1149/1945-7111/ab7f84]