Liquid biopsy-based decision support algorithms for diagnosis and subtyping of lung cancer

被引:21
作者
Visser, Esther [1 ,2 ,3 ,4 ]
Genet, Sylvia A. A. M. [1 ,2 ,4 ,5 ]
de Kock, Remco P. P. A. [1 ,2 ,3 ,4 ]
van den Borne, Ben E. E. M. [2 ]
Soud, Maggy Youssef-El [3 ]
Belderbos, Huub N. A. [6 ]
Stege, Gerben [7 ]
de Saegher, Marleen E. A. [8 ]
Van't Westeinde, Susan C. [9 ]
Brunsveld, Luc [1 ,4 ,6 ]
Broeren, Maarten A. C. [1 ,3 ,4 ]
Van de Kerkhof, Daan [1 ,2 ]
Deiman, Birgit A. L. M. [2 ,4 ]
Eduati, Federica [1 ,4 ,5 ,10 ]
Scharnhorst, Volkher [1 ,2 ,4 ,5 ,10 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[2] Catharina Hosp, Eindhoven, Netherlands
[3] Maxima Med Ctr, Eindhoven, Netherlands
[4] Expert Ctr Clin Chem Eindhoven, Eindhoven, Netherlands
[5] Eindhoven Univ Technol, Inst Complex Mol Syst, Eindhoven, Netherlands
[6] Amphia Hosp, Breda, Netherlands
[7] Anna Hosp, Geldrop, Netherlands
[8] Sint Jans Gasthuis, Weert, Netherlands
[9] Maasstad Hosp, Rotterdam, Netherlands
[10] Eindhoven Univ Technol, Eindhoven Artificial Intelligence Syst Inst, Eindhoven, Netherlands
关键词
Protein tumor markers; circulating tumor DNA; Lung cancer; Decision; support algorithm; Liquid biopsy; SERUM TUMOR-MARKERS; CHEMOTHERAPY; BIOMARKERS; PROGNOSIS; THERAPY;
D O I
10.1016/j.lungcan.2023.01.014
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objectives: Pathologic subtyping of tissue biopsies is the gold standard for the diagnosis of lung cancer (LC), which could be complicated in cases of e.g. inconclusive tissue biopsies or unreachable tumors. The diagnosis of LC could be supported in a minimally invasive manner using protein tumor markers (TMs) and circulating tumor DNA (ctDNA) measured in liquid biopsies (LBx). This study evaluates the performance of LBx-based decision-support algorithms for the diagnosis of LC and subtyping into small- and non-small-cell lung cancer (SCLC and NSCLC) aiming to directly impact clinical practice.Materials and Methods: In this multicenter prospective study (NL9146), eight protein TMs (CA125, CA15.3, CEA, CYFRA 21-1, HE4, NSE, proGRP and SCCA) and ctDNA mutations in EGFR, KRAS and BRAF were analyzed in blood of 1096 patients suspected of LC. The performance of individual and combined TMs to identify LC, NSCLC or SCLC was established by evaluating logistic regression models at pre-specified positive predictive values (PPV) of >= 95% or >= 98%. The most informative protein TMs included in the multi-parametric models were selected by recursive feature elimination.Results: Single TMs could identify LC, NSCLC and SCLC patients with 46%, 25% and 40% sensitivity, respectively, at pre-specified PPVs. Multi-parametric models combining TMs and ctDNA significantly improved sensitivities to 65%, 67% and 50%, respectively. Conclusion: In patients suspected of LC, the LBx-based decision-support algorithms allowed identification of about two-thirds of all LC and NSCLC patients and half of SCLC patients. These models therefore show clinical value and may support LC diagnostics, especially in patients for whom pathologic subtyping is impossible or incomplete.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [31] An Intelligent Decision Support System for Lung Cancer Diagnosis
    Alsheikhy A.A.
    Said Y.F.
    Shawly T.
    Computer Systems Science and Engineering, 2023, 46 (01): : 779 - 817
  • [32] An overview of challenges associated with exosomal miRNA isolation toward liquid biopsy-based ovarian cancer detection
    Bhadra, Mridula
    Sachan, Manisha
    HELIYON, 2024, 10 (09)
  • [33] Liquid Biopsy-Based Biosensors for MRD Detection and Treatment Monitoring in Non-Small Cell Lung Cancer (NSCLC)
    Sardarabadi, Parvaneh
    Kojabad, Amir Asri
    Jafari, Davod
    Liu, Cheng-Hsien
    BIOSENSORS-BASEL, 2021, 11 (10):
  • [34] Liquid biopsy in lung cancer management
    Zamfir, Maria-Anca Irofei
    Buburuzan, Laura
    Hudita, Ariana
    Galateanu, Bianca
    Ginghina, Octav
    Ion, Daniel
    Motas, Natalia
    Ardeleanu, Carmen Maria
    Costache, Marieta
    ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY, 2022, 63 (01) : 31 - 38
  • [35] Liquid biopsy-based early tumor and minimal residual disease detection: New perspectives for cancer predisposition syndromes
    Bohaumilitzky, Lena
    Gebert, Johannes
    Doeberitz, Magnus von Knebel
    Kloor, Matthias
    Ahadova, Aysel
    MEDIZINISCHE GENETIK, 2023, 35 (04) : 259 - 268
  • [36] Mutation-Agnostic Detection of Colorectal Cancer Using Liquid Biopsy-Based Methylation-Specific Signatures
    Gouda, Mohamed A.
    Duose, Dzifa Y.
    Lapin, Morten
    Zalles, Stephanie
    Huang, Helen J.
    Xi, Yuanxin
    Zheng, Xiaofeng
    Aldesoky, Amira, I
    Alhanafy, Alshimaa M.
    Shehata, Mohamed A.
    Wang, Jing
    Kopetz, Scott
    Meric-Bernstam, Funda
    Wistuba, Ignacio I.
    Luthra, Rajyalakshmi
    Janku, Filip
    ONCOLOGIST, 2022, : 368 - 372
  • [37] Exosomes as a liquid biopsy for lung cancer
    Cui, Shaohua
    Cheng, Zhuoan
    Qin, Wenxin
    Jiang, Liyan
    LUNG CANCER, 2018, 116 : 46 - 54
  • [38] Liquid and Tissue Biopsies for Lung Cancer: Algorithms and Perspectives
    Hofman, Paul
    CANCERS, 2024, 16 (19)
  • [39] Liquid biopsy-based analysis by ddPCR and CAPP-Seq in melanoma patients
    Kaneko, Akira
    Kanemaru, Hisashi
    Kajihara, Ikko
    Mijiddorj, Tselmeg
    Miyauchi, Hitomi
    Kuriyama, Haruka
    Kimura, Toshihiro
    Sawamura, Soichiro
    Makino, Katsunari
    Miyashita, Azusa
    Aoi, Jun
    Makino, Takamitsu
    Masuguchi, Shinichi
    Fukushima, Satoshi
    Ihn, Hironobu
    JOURNAL OF DERMATOLOGICAL SCIENCE, 2021, 102 (03) : 158 - 166
  • [40] Subtyping Lung Cancer Using DNA Methylation in Liquid Biopsies
    Nunes, Sandra P.
    Diniz, Francisca
    Moreira-Barbosa, Catarina
    Constancio, Vera
    Silva, Ana Victor
    Oliveira, Julio
    Soares, Marta
    Paulino, Sofia
    Cunha, Ana Luisa
    Rodrigues, Jessica
    Antunes, Luis
    Henrique, Rui
    Jeronimo, Carmen
    JOURNAL OF CLINICAL MEDICINE, 2019, 8 (09)