Liquid biopsy-based decision support algorithms for diagnosis and subtyping of lung cancer

被引:21
|
作者
Visser, Esther [1 ,2 ,3 ,4 ]
Genet, Sylvia A. A. M. [1 ,2 ,4 ,5 ]
de Kock, Remco P. P. A. [1 ,2 ,3 ,4 ]
van den Borne, Ben E. E. M. [2 ]
Soud, Maggy Youssef-El [3 ]
Belderbos, Huub N. A. [6 ]
Stege, Gerben [7 ]
de Saegher, Marleen E. A. [8 ]
Van't Westeinde, Susan C. [9 ]
Brunsveld, Luc [1 ,4 ,6 ]
Broeren, Maarten A. C. [1 ,3 ,4 ]
Van de Kerkhof, Daan [1 ,2 ]
Deiman, Birgit A. L. M. [2 ,4 ]
Eduati, Federica [1 ,4 ,5 ,10 ]
Scharnhorst, Volkher [1 ,2 ,4 ,5 ,10 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[2] Catharina Hosp, Eindhoven, Netherlands
[3] Maxima Med Ctr, Eindhoven, Netherlands
[4] Expert Ctr Clin Chem Eindhoven, Eindhoven, Netherlands
[5] Eindhoven Univ Technol, Inst Complex Mol Syst, Eindhoven, Netherlands
[6] Amphia Hosp, Breda, Netherlands
[7] Anna Hosp, Geldrop, Netherlands
[8] Sint Jans Gasthuis, Weert, Netherlands
[9] Maasstad Hosp, Rotterdam, Netherlands
[10] Eindhoven Univ Technol, Eindhoven Artificial Intelligence Syst Inst, Eindhoven, Netherlands
关键词
Protein tumor markers; circulating tumor DNA; Lung cancer; Decision; support algorithm; Liquid biopsy; SERUM TUMOR-MARKERS; CHEMOTHERAPY; BIOMARKERS; PROGNOSIS; THERAPY;
D O I
10.1016/j.lungcan.2023.01.014
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objectives: Pathologic subtyping of tissue biopsies is the gold standard for the diagnosis of lung cancer (LC), which could be complicated in cases of e.g. inconclusive tissue biopsies or unreachable tumors. The diagnosis of LC could be supported in a minimally invasive manner using protein tumor markers (TMs) and circulating tumor DNA (ctDNA) measured in liquid biopsies (LBx). This study evaluates the performance of LBx-based decision-support algorithms for the diagnosis of LC and subtyping into small- and non-small-cell lung cancer (SCLC and NSCLC) aiming to directly impact clinical practice.Materials and Methods: In this multicenter prospective study (NL9146), eight protein TMs (CA125, CA15.3, CEA, CYFRA 21-1, HE4, NSE, proGRP and SCCA) and ctDNA mutations in EGFR, KRAS and BRAF were analyzed in blood of 1096 patients suspected of LC. The performance of individual and combined TMs to identify LC, NSCLC or SCLC was established by evaluating logistic regression models at pre-specified positive predictive values (PPV) of >= 95% or >= 98%. The most informative protein TMs included in the multi-parametric models were selected by recursive feature elimination.Results: Single TMs could identify LC, NSCLC and SCLC patients with 46%, 25% and 40% sensitivity, respectively, at pre-specified PPVs. Multi-parametric models combining TMs and ctDNA significantly improved sensitivities to 65%, 67% and 50%, respectively. Conclusion: In patients suspected of LC, the LBx-based decision-support algorithms allowed identification of about two-thirds of all LC and NSCLC patients and half of SCLC patients. These models therefore show clinical value and may support LC diagnostics, especially in patients for whom pathologic subtyping is impossible or incomplete.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [21] Applications of liquid biopsy in lung cancer-diagnosis, prognosis prediction, and disease monitoring
    Luo, Wenna
    Rao, Mingliang
    Qu, Jiayao
    Luo, Dixian
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2018, 10 (12): : 3911 - 3923
  • [22] Liquid biopsy for early stage lung cancer
    Liang, Wenhua
    Zhao, Yi
    Huang, Weizhe
    Liang, Hengrui
    Zeng, Haikang
    He, Jianxing
    JOURNAL OF THORACIC DISEASE, 2018, 10 : S876 - S881
  • [23] Recently Emerging Liquid Biopsy-based Non-invasive Methylation Biomarkers for Gastric Cancer Diagnosis, Prognosis and Therapy Response Prediction
    Alom, Sarowar
    Anal, B. S. Vaanrhaangh
    Ghosh, Srimoyee
    CURRENT CANCER THERAPY REVIEWS, 2024,
  • [24] Liquid biopsy in lung cancer
    Kitagawa, Shingo
    Seike, Masahiro
    JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 2025, : 453 - 458
  • [25] Diagnosis of hepatocellular carcinoma using liquid biopsy-based biomarkers: a systematic review and network meta-analysis
    Jiang, Yutong
    Qi, Shangwen
    Zhang, Rongrong
    Zhao, Ruixia
    Fu, Yu
    Fang, Yuxuan
    Shao, Mingyi
    FRONTIERS IN ONCOLOGY, 2025, 14
  • [26] Liquid biopsy-based protein biomarkers for risk prediction, early diagnosis, and prognostication of cholangiocarcinoma
    Lapitz, Ainhoa
    Azkargorta, Mikel
    Milkiewicz, Piotr
    Olaizola, Paula
    Zhuravleva, Ekaterina
    Grimsrud, Marit M.
    Schramm, Christoph
    Arbelaiz, Ander
    O'Rourke, Colm J.
    La Casta, Adelaida
    Milkiewicz, Malgorzata
    Pastor, Tania
    Vesterhus, Mette
    Jimenez-Aguero, Raul
    Dill, Michael T.
    Lamarca, Angela
    Valle, Juan W.
    Macias, Rocio I. R.
    Izquierdo-Sanchez, Laura
    Castano, Ylenia Perez
    Caballero-Camino, Francisco Javier
    Riano, Ioana
    Krawczyk, Marcin
    Ibarra, Cesar
    Bustamante, Javier
    Nova-Camacho, Luiz M.
    Falcon-Perez, Juan M.
    Elortza, Felix
    Perugorria, Maria J.
    Andersen, Jesper B.
    Bujanda, Luis
    Karlsen, Tom H.
    Folseraas, Trine
    Rodrigues, Pedro M.
    Banales, Jesus M.
    JOURNAL OF HEPATOLOGY, 2023, 79 (01) : 93 - 108
  • [27] Integrating a microRNA signature as a liquid biopsy-based tool for the early diagnosis and prediction of potential therapeutic targets in pancreatic cancer
    Shi, Wenjie
    Wartmann, Thomas
    Accuffi, Sara
    Al-Madhi, Sara
    Perrakis, Aristotelis
    Kahlert, Christoph
    Link, Alexander
    Venerito, Marino
    Keitel-Anselmino, Verena
    Bruns, Christiane
    Croner, Roland S.
    Zhao, Yue
    Kahlert, Ulf D.
    BRITISH JOURNAL OF CANCER, 2023, 130 (01) : 43 - 52
  • [28] Liquid biopsy-based comprehensive gene mutation profiling for gynecological cancer using CAncer Personalized Profiling by deep Sequencing
    Iwahashi, Naoyuki
    Sakai, Kazuko
    Noguchi, Tomok
    TamakiYahata
    Matsukawa, Hitomi
    SaoriToujima
    Nishio, Kazuto
    Ino, Kazuhiko
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [29] The Role of the Liquid Biopsy in Decision-Making for Patients with Non-Small Cell Lung Cancer
    Akhoundova, D.
    Mosquera Martinez, J.
    Musmann, L. E.
    Britschgi, C.
    Rutsche, C.
    Rechsteiner, M.
    Nadal, E.
    Garcia Campelo, M. R.
    Curioni-Fontecedro, A.
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (11) : 1 - 19
  • [30] Liquid Biopsy-Based Detection and Response Prediction for Depression
    Kim, Seungmin
    Kang, Youbin
    Shin, Hyunku
    Lee, Eun Byul
    Ham, Byung-Joo
    Choi, Yeonho
    ACS NANO, 2024, 18 (47) : 32498 - 32507