PREDICT-GTN 1: Can we improve the FIGO scoring system in gestational trophoblastic neoplasia?

被引:8
作者
Parker, Victoria L. [1 ,5 ]
Winter, Matthew C. [1 ,2 ]
Tidy, John A. [2 ]
Hancock, Barry W. [1 ]
Palmer, Julia E. [2 ]
Sarwar, Naveed [3 ]
Kaur, Baljeet [3 ]
McDonald, Katie [2 ]
Aguiar, Xianne [3 ]
Singh, Kamaljit [2 ]
Unsworth, Nick [3 ]
Jabbar, Imran [2 ]
Pacey, Allan A. [1 ]
Harrison, Robert F. [4 ]
Seckl, Michael J. [3 ]
机构
[1] Univ Sheffield, Med Sch, Dept Oncol & Metab, Sheffield, England
[2] Sheffield Teaching Hosp NHS Fdn Trust, Sheffield Ctr Trophoblast Dis, Weston Pk Canc Ctr, Sheffield, England
[3] Imperial Coll Healthcare NHS Trust, Charing Cross Hosp, Gestat Trophoblast Dis Ctr, Dept Med Oncol, London, England
[4] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, England
[5] Univ Sheffield, Med Sch, Dept Oncol & Metab, Beech Hill Rd, Sheffield S10 2RX, England
关键词
FIGO; gestational trophoblastic neoplasia; scoring system; ARTERY PULSATILITY INDEX; METHOTREXATE RESISTANCE; MOLAR PREGNANCY; RISK; MANAGEMENT; DIAGNOSIS; DISEASE; WOMEN; IDENTIFICATION; CHEMOTHERAPY;
D O I
10.1002/ijc.34352
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Gestational trophoblastic neoplasia (GTN) patients are treated according to the eight-variable International Federation of Gynaecology and Obstetrics (FIGO) scoring system, that aims to predict first-line single-agent chemotherapy resistance. FIGO is imperfect with one-third of low-risk patients developing disease resistance to first-line single-agent chemotherapy. We aimed to generate simplified models that improve upon FIGO. Logistic regression (LR) and multilayer perceptron (MLP) modelling (n = 4191) generated six models (M1-6). M1, all eight FIGO variables (scored data); M2, all eight FIGO variables (scored and raw data); M3, nonimaging variables (scored data); M4, nonimaging variables (scored and raw data); M5, imaging variables (scored data); and M6, pretreatment hCG (raw data) + imaging variables (scored data). Performance was compared to FIGO using true and false positive rates, positive and negative predictive values, diagnostic odds ratio, receiver operating characteristic (ROC) curves, Bland-Altman calibration plots, decision curve analysis and contingency tables. M1-6 were calibrated and outperformed FIGO on true positive rate and positive predictive value. Using LR and MLP, M1, M2 and M4 generated small improvements to the ROC curve and decision curve analysis. M3, M5 and M6 matched FIGO or performed less well. Compared to FIGO, most (excluding LR M4 and MLP M5) had significant discordance in patient classification (McNemar's test P < .05); 55-112 undertreated, 46-206 overtreated. Statistical modelling yielded only small gains over FIGO performance, arising through recategorisation of treatment-resistant patients, with a significant proportion of under/overtreatment as the available data have been used a priori to allocate primary chemotherapy. Streamlining FIGO should now be the focus.
引用
收藏
页码:986 / 997
页数:12
相关论文
共 55 条
[21]   Evaluation and suggestions for improving the FIGO 2000 staging criteria for gestational trophoblastic neoplasia: A ten-year review of 1420 patients [J].
Jiang, Fang ;
Wan, Xi-run ;
Xu, Tao ;
Feng, Feng-zhi ;
Ren, Tong ;
Yang, Jun-jun ;
Zhao, Jun ;
Yang, Tao ;
Xiang, Yang .
GYNECOLOGIC ONCOLOGY, 2018, 149 (03) :539-544
[22]   First-line chemotherapy in low-risk gestational trophoblastic neoplasia [J].
Lawrie, Theresa A. ;
Alazzam, Mo'iad ;
Tidy, John ;
Hancock, Barry W. ;
Osborne, Raymond .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2016, (06)
[23]   Distinct microRNA profiles for complete hydatidiform moles at risk of malignant progression [J].
Lin, Lawrence H. ;
Maesta, Izildinha ;
St Laurent, Jessica D. ;
Hasselblatt, Kathleen T. ;
Horowitz, Neil S. ;
Goldstein, Donald P. ;
Quade, Bradley J. ;
Sun, Sue Y. ;
Braga, Antonio ;
Fisher, Rosemary A. ;
Berkowitz, Ross S. ;
Elias, Kevin M. .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2021, 224 (04)
[24]   Relapse rates after two versus three consolidation courses of methotrexate in the treatment of low-risk gestational trophoblastic neoplasia [J].
Lybol, C. ;
Sweep, F. C. G. J. ;
Harvey, R. ;
Mitchell, H. ;
Short, D. ;
Thomas, C. M. G. ;
Ottevanger, P. B. ;
Savage, P. M. ;
Massuger, L. F. A. G. ;
Seckl, M. J. .
GYNECOLOGIC ONCOLOGY, 2012, 125 (03) :576-579
[25]   The management and outcome of women with post-hydatidiform mole 'low-risk' gestational trophoblastic neoplasia, but hCG levels in excess of 100 000 IU l-1 [J].
McGrath, S. ;
Short, D. ;
Harvey, R. ;
Schmid, P. ;
Savage, P. M. ;
Seckl, M. J. .
BRITISH JOURNAL OF CANCER, 2010, 102 (05) :810-814
[26]   Low-risk persistent gestational trophoblastic disease: Outcome after initial treatment with low-dose methotrexate and folinic acid from 1992 to 2000 [J].
McNeish, IA ;
Strickland, S ;
Holden, L ;
Rustin, GJS ;
Foskett, M ;
Seckl, MJ ;
Newlands, ES .
JOURNAL OF CLINICAL ONCOLOGY, 2002, 20 (07) :1838-1844
[27]   Clinical applications of analysis of plasma circulating complete hydatidiform mole pregnancy-associated miRNAs in gestational trophoblastic neoplasia: A preliminary investigation [J].
Miura, K. ;
Hasegawa, Y. ;
Abe, S. ;
Higashijima, A. ;
Miura, S. ;
Mishima, H. ;
Kinoshita, A. ;
Kaneuchi, M. ;
Yoshiura, K. ;
Masuzaki, H. .
PLACENTA, 2014, 35 (09) :787-789
[28]   Underexpression of 4 Placenta-Associated MicroRNAs in Complete Hydatidiform Moles [J].
Na, Quan ;
Wang, Dan ;
Song, Weiwei .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2012, 22 (06) :1075-1080
[29]   Diagnosis and management of gestational trophoblastic disease: 2021 update [J].
Ngan, Hextan Y. S. ;
Seckl, Michael J. ;
Berkowitz, Ross S. ;
Xiang, Yang ;
Golfier, Francois ;
Sekharan, Paradan K. ;
Lurain, John R. ;
Massuger, Leon .
INTERNATIONAL JOURNAL OF GYNECOLOGY & OBSTETRICS, 2021, 155 :86-93
[30]  
Parker V., 2021, OBSTET GYNAECOL REPR, V31, P21