Well-posedness and stability for a nonlinear Euler-Bernoulli beam equation

被引:0
作者
Deng, Panyu [1 ]
Zheng, Jun [1 ,2 ]
Zhu, Guchuan [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Sichuan, Peoples R China
[2] Polytech Montreal, Dept Elect Engn, 6079 POB,Stn Ctr Ville, Montreal, PQ H3T 1J4, Canada
来源
COMMUNICATIONS IN ANALYSIS AND MECHANICS | 2024年 / 16卷 / 01期
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Euler-Bernoulli beam equation; input-to-state stability; integral input-to-state stability; boundary disturbance; Lyapunov method; TO-STATE STABILITY; LYAPUNOV FUNCTIONS; PARABOLIC PDES; FEEDBACK STABILIZATION; BOUNDARY DISTURBANCES; ISS; SYSTEMS; RESPECT;
D O I
10.3934/cam.2024009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-posedness and stability for a nonlinear Euler-Bernoulli beam equation modeling railway track deflections in the framework of input-to-state stability (ISS) theory. More specifically, in the presence of both distributed in-domain and boundary disturbances, we prove first the existence and uniqueness of a classical solution by using the technique of lifting and the semigroup method, and then establish the L r -integral input-to-state stability estimate for the solution whenever r is an element of [2, +infinity] by constructing a suitable Lyapunov functional with the aid of Sobolev-like inequalities, which are used to deal with the boundary terms. We provide an extensive extension of relevant work presented in the existing literature.
引用
收藏
页码:193 / 216
页数:24
相关论文
共 45 条
[1]   Leader-Follower Synchronization and ISS Analysis for a Network of Boundary-Controlled Wave PDEs [J].
Aguilar, Luis ;
Orlov, Yury ;
Pisano, Alessandro .
IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02) :683-688
[2]   Frequency analysis of finite beams on nonlinear Kelvin-Voight foundation under moving loads [J].
Ansari, M. ;
Esmailzadeh, E. ;
Younesian, D. .
JOURNAL OF SOUND AND VIBRATION, 2011, 330 (07) :1455-1471
[3]   A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients [J].
Argomedo, Federico Bribiesca ;
Prieur, Christophe ;
Witrant, Emmanuel ;
Bremond, Sylvain .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (02) :290-303
[4]   Non-linear vibration of Euler-Bernoulli beams [J].
Barari, A. ;
Kaliji, H. D. ;
Ghadimi, M. ;
Domairry, G. .
LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2011, 8 (02) :139-148
[5]   Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory [J].
Civalek, Omer ;
Demir, Cigdem .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (05) :2053-2067
[6]  
Curtain RF., 1995, INTRO INFINITE DIMEN, DOI [10.1007/978-1-4612-4224-6, DOI 10.1007/978-1-4612-4224-6]
[8]  
Damak H, 2022, MATH CONTROL RELAT F, DOI [10.3934/mcrf.2022035, 10.3934/merf.2022035]
[9]   Input-to-state stability of infinite-dimensional control systems [J].
Dashkovskiy, Sergey ;
Mironchenko, Andrii .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2013, 25 (01) :1-35
[10]   Asymptotic behaviour for a thermoelastic problem of a microbeam with thermoelasticity of type III [J].
Diaz, Roberto ;
Vera, Octavio .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (74) :1-13