Statistical Inference for Spatial Regionalization

被引:0
|
作者
Alrashid, Hussah [1 ]
Magdy, Amr [1 ]
Rey, Sergio [2 ]
机构
[1] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
[2] San Diego State Univ, Ctr Open Geog Sci, San Diego, CA 92182 USA
来源
31ST ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2023 | 2023年
基金
美国国家科学基金会;
关键词
Statistical Inference; Regionalization; Spatial Clustering;
D O I
10.1145/3589132.3625608
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The process of regionalization involves clustering a set of spatial areas into spatially contiguous regions. Given the NP-hard nature of regionalization problems, all existing algorithms yield approximate solutions. To ascertain the quality of these approximations, it is crucial for domain experts to obtain statistically significant evidence on optimizing the objective function, in comparison to a random reference distribution derived from all potential sample solutions. In this paper, we propose a novel spatial regionalization problem, denoted as SISR (Statistical Inference for Spatial Regionalization), which generates random sample solutions with a predetermined region cardinality. The driving motivation behind SISR is to conduct statistical inference on any given regionalization scheme. To address SISR, we present a parallel technique named PRRP (P-Regionalization through Recursive Partitioning). PRRP operates over three phases: the region growing phase constructs initial regions with a predefined cardinality, while the region merging and region splitting phases ensure the spatial contiguity of unassigned areas, allowing for the growth of subsequent regions with predefined cardinalites. An extensive evaluation shows the effectiveness of PRRP using various real datasets.
引用
收藏
页码:362 / 373
页数:12
相关论文
共 50 条
  • [1] Statistical inference on regression with spatial dependence
    Robinson, Peter M.
    Thawornkaiwong, Supachoke
    JOURNAL OF ECONOMETRICS, 2012, 167 (02) : 521 - 542
  • [2] Statistical inference and simulation for spatial point processes
    Sisson, SA
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2005, 168 : 258 - 259
  • [3] STATISTICAL-INFERENCE OF SPATIAL RANDOM FUNCTIONS
    FEINERMAN, E
    DAGAN, G
    BRESLER, E
    WATER RESOURCES RESEARCH, 1986, 22 (06) : 935 - 942
  • [4] Statistical inference and spatial patterns in correlates of IQ
    Hassall, Christopher
    Sherratt, Thomas N.
    INTELLIGENCE, 2011, 39 (05) : 303 - 310
  • [5] STATISTICAL INFERENCE OF SPATIAL RANDOM FUNCTIONS.
    Feinerman, E.
    Dagan, G.
    Bresler, E.
    Water Resources Research, 1986, 22 (06): : 935 - 942
  • [6] Statistical Inference of Partially Specified Spatial Autoregressive Model
    Zhang, Yuan-qing
    Yang, Guang-ren
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (01): : 1 - 16
  • [7] STATISTICAL INFERENCE FOR SPATIAL STATISTICS DEFINED IN THE FOURIER DOMAIN
    Rao, Suhasini Subba
    ANNALS OF STATISTICS, 2018, 46 (02): : 469 - 499
  • [8] Statistical inference in functional semiparametric spatial autoregressive model
    Liu, Gaosheng
    Bai, Yang
    AIMS MATHEMATICS, 2021, 6 (10): : 10890 - 10906
  • [9] Statistical inference for internal network reliability with spatial dependence
    Dinwoodie, IH
    Mosteig, E
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (04) : 663 - 674
  • [10] Statistical inference for spatial auto-linear processes
    Dimitriou-Fakalou C.
    Journal of Statistical Theory and Practice, 2010, 4 (3) : 345 - 365