Subdiffusive spin transport in disordered classical Heisenberg chains

被引:4
作者
McRoberts, Adam J. [1 ]
Balducci, Federico [2 ,3 ]
Moessner, Roderich [1 ]
Scardicchio, Antonello [4 ,5 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[3] SISSA, via Bonomea 265, I-34136 Trieste, Italy
[4] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[5] INFN, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
关键词
RANDOM-WALKS; DIFFUSION; LATTICE; DYNAMICS; CHAOS; BEHAVIOR; MODELS;
D O I
10.1103/PhysRevB.108.094204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the transport and equilibration properties of a classical Heisenberg chain, whose couplings are random variables drawn from a one-parameter family of power-law distributions. The absence of a scale in the couplings makes the system deviate substantially from the usual paradigm of diffusive spin hydrodynamics and exhibit a regime of subdiffusive transport with an exponent changing continuously with the parameter of the distribution. We propose a solvable phenomenological model that correctly yields the subdiffusive exponent, thereby linking local fluctuations in the coupling strengths to the long-time, large-distance behavior. It also yields the finite-time corrections to the asymptotic scaling, which can be important in fitting the numerical data. We show how such exponents undergo transitions as the distribution of the coupling gets wider, marking the passage from diffusion to a regime of slow diffusion, and finally to subdiffusion.
引用
收藏
页数:12
相关论文
共 73 条
[1]   Distinguishing localization from chaos: Challenges in finite-size systems [J].
Abanin, D. A. ;
Bardarson, J. H. ;
De Tomasi, G. ;
Gopalakrishnan, S. ;
Khemani, V ;
Parameswaran, S. A. ;
Pollmann, F. ;
Potter, A. C. ;
Serbyn, M. ;
Vasseur, R. .
ANNALS OF PHYSICS, 2021, 427
[2]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[3]   SELF-CONSISTENT THEORY OF LOCALIZATION [J].
ABOUCHACRA, R ;
ANDERSON, PW ;
THOULESS, DJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (10) :1734-1752
[4]   Anomalous Diffusion and Griffiths Effects Near the Many-Body Localization Transition [J].
Agarwal, Kartiek ;
Gopalakrishnan, Sarang ;
Knap, Michael ;
Mueller, Markus ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2015, 114 (16)
[5]   EXCITATION DYNAMICS IN RANDOM ONE-DIMENSIONAL SYSTEMS [J].
ALEXANDER, S ;
BERNASCONI, J ;
SCHNEIDER, WR ;
ORBACH, R .
REVIEWS OF MODERN PHYSICS, 1981, 53 (02) :175-198
[6]   NEW METHOD FOR A SCALING THEORY OF LOCALIZATION [J].
ANDERSON, PW ;
THOULESS, DJ ;
ABRAHAMS, E ;
FISHER, DS .
PHYSICAL REVIEW B, 1980, 22 (08) :3519-3526
[7]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[8]   Spin diffusion in the one-dimensional classical Heisenberg model [J].
Bagchi, Debarshee .
PHYSICAL REVIEW B, 2013, 87 (07)
[9]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[10]   DIFFUSION AND HOPPING CONDUCTIVITY IN DISORDERED ONE-DIMENSIONAL LATTICE SYSTEMS [J].
BERNASCONI, J ;
SCHNEIDER, WR ;
WYSS, W .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1980, 37 (02) :175-184