Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields

被引:1
作者
Boeckle, Gebhard [1 ,2 ]
Juschka, Ann-Kristin [1 ,2 ]
机构
[1] Heidelberg Univ, IWR, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[2] Inst Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
关键词
11F80; 11F85; 11F70; MODULAR-FORMS; REPRESENTATIONS;
D O I
10.1017/fms.2023.82
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a finite extension of the p-adic field Q(p) of degree d, let F be a finite field of characteristic p and let D be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field F. For the universal mod p pseudodeformation ring R-univ (D )of D, we prove the following: The ring R(D)(ps )is equidimensional of dimension dn2 +1. Its reduced quotient R-univ (D),red contains a dense open subset of regular points x whose associated pseudocharacter D-x is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of Spec R-univ (D) . Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring R-univ (D) of D.
引用
收藏
页数:83
相关论文
共 52 条
[11]  
Chenevier G., 2011, PREPRINT
[12]  
Chenevier G, 2014, LOND MATH S, V414, P221
[13]   On the theory of local rings [J].
Chevalley, C .
ANNALS OF MATHEMATICS, 1943, 44 :690-708
[14]   Irreducible Components of Deformation Spaces: Wild 2-Adic Exercises [J].
Colmez, Pierre ;
Dospinescu, Gabriel ;
Paskunas, Vytautas .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (14) :5333-5356
[15]  
Curtis C.W., 1962, Pure Appl. Math., VXI
[16]  
Curtis C. W., 1981, METHODS REPRESENTATI
[17]  
Emerton M, 2022, Arxiv, DOI arXiv:1908.07185
[18]  
GOuvEA F. Q., 2001, IASPARK CITY MATH SE, V9, P233, DOI [10.1090/pcms/009/05, DOI 10.1090/PCMS/009/05]
[19]  
Grothendieck A., 1960, Inst. Hautes Etudes Sci. Publ. Math., V4, P5
[20]  
Grothendieck A., 1965, Inst. Hautes Etudes Sci. Publ. Math., V24, P1